基于K折交叉验证和Stacking融合的短期负荷预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM614

基金项目:

国网公司总部科技项目(SGTYHT/16JS198)


Shortterm load forecasting based on the Kfold crossvalidation and stacking ensemble
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    短期负荷预测对于电力系统的经济调度和稳定运行具有重要意义。为了提升短期负荷预测的精度,提出基于K折交叉验证和Stacking融合的短期负荷预测方法。首先,基于皮尔逊相关系数对影响短期负荷的多个特征进行筛选,剔除冗余特征。其次,利用K折交叉验证法训练第一层的各个子模型,并将各个子模型的预测结果作为新特征用于训练第二层模型。接着,将子模型的结果进行Stacking融合,使用第二层的模型得到短期负荷的预测结果。最后,采用新英格兰的实际数据验证所提方法的有效性。仿真结果表明,所提的K折交叉验证法能够有效地提高模型的泛化能力,Stacking融合不仅可以提升预测的平均精度,还可以减小最大的预测误差,比单一模型预测更具优势。

    Abstract:

    Shortterm load forecasting is of great significance for the economic dispatching and operation of power systems. In order to improve the accuracy of shortterm load forecasting, a shortterm load forecasting method based on kfold cross validation and Stacking ensemble is proposed. Firstly, the Pearson coefficient method is utilized to screen multiple features affecting shortterm load, and redundant features are eliminated. Secondly, the kfold validation crossvalidation method is applied to train the submodels of the first level, and the prediction results of each submodel are taken as new features to train the second level model. Thirdly, the results of the submodel are stacked, and the shortterm load forecasting results obtained by the second layer model. Finally, the validity of the proposed method is verified by the actual data set from New England. The simulation results show that the proposed kfold crossvalidation method can effectively improve the generalization ability of the model. Stacking fusion can not only improve the average accuracy of prediction, but also reduce the maximum prediction error, which is more advantageous than single model prediction.

    参考文献
    相似文献
    引证文献
引用本文

朱文广,李映雪,杨为群,等.基于K折交叉验证和Stacking融合的短期负荷预测[J].电力科学与技术学报,2021,36(1):87-95.
ZHU Wenguang, LI Yingxue, YANG Weiqun, et al. Shortterm load forecasting based on the Kfold crossvalidation and stacking ensemble[J]. Journal of Electric Power Science and Technology,2021,36(1):87-95.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-16
  • 出版日期:
文章二维码