计及源荷不确定性和多类储能响应的园区IES多目标优化调度模型
CSTR:
作者:
中图分类号:

TM73

基金项目:

国家自然科学基金(51977012,51677007);国网江苏省电力有限公司科技项目(J2019047)


Multi-objective optimal scheduling model for IES in parks considering source and load uncertainties and multiple type of energy storage responses
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | | | |
  • 文章评论
    摘要:

    考虑综合能源系统形态与运行特点的变化,提出一种计及源荷不确定性和多类储能需求响应的综合能源系统多目标调度模型。首先,建立综合能源系统分布式风电和电热气负荷不确定模型以及确定电、气、热多类储能激励和价格需求响应模型;其次,以电、气能源购买、弃风和环境污染成本等多目标函数优化,在源荷侧不确定性和多类储能需求响应下,考虑多类能源功率平衡、冷热电系统之间转化耦合等约束条件,建立综合能源系统源荷储多目标优化调度模型,并采用多目标粒子群优化算法(PSO)对所构建模型优化求解;最后,采用园区能源系统算例对文中模型进行仿真,结果表明其正确有效,该模型可为园区综合能源源荷储需求互济服务提供新的策略。

    Abstract:

    The construction and component of integrated energy system has changed with fast development of new energy emergence. Under the background, a multi-objective scheduling model is proposed which takes into account source and load uncertainty and multiple types of energy storage demand response. Firstly, an uncertain model of distributed wind power and electric heating gas load is established. The multiple types of energy storage incentives and price demand response models of electricity, gas and heat are then determined. Secondly, the purchase cost of electricity and gas energy, the cost of abandoning wind and the cost of environmental pollution are chosen as the objective of multi-objective optimization. Under the uncertainty of source & load side and the response of multiple types of energy storage demand, the constraints of multiple types of energy power balance, conversion and coupling between cooling and heating systems are considered to establish a source, grid and storage multi-objective optimal scheduling model for integrated energy system. Then the multi-objective Particle Swarm Optimization algorithm is utilized to optimize the constructed model. Finally, a park energy system is simulated. The results show that the proposed optimization is effective. The model can provide a new strategy for the mutual energy service of the park's comprehensive energy source storage and demand.

    参考文献
    [1] 张永会,鹿丽,潘超,等.计及风—光—荷时序特性的主动配电网源—储规划策略[J].电力系统保护与控制,2020,48(20):48-56.ZHANG Yonghui,LU Li,PAN Chao,et al.Planning strategies of source-storage considering wind-photovoltaic-load time characteristics[J].Power System Protection and Control,2020,48(20):48-56.
    [2] 吴俊,诸军,沈海平,等.配电网三相不平衡度近似计算方法简析[J].高压电器,2019,55(12):211-214.WU Jun,ZHU Jun,SHEN Haiping,et al.Analysis of the three-phase voltage unbalance computing formula used for distribution network[J].High Voltage Apparatus,2019,55(12):211-214.
    [3] 马喜平,沈渭程,杨臣,等.高比例新能源微电网参与电网调峰能力评估[J].电网与清洁能源,2019,35(8):62-68+75.MA Xiping,SHEN Weicheng,YANG Chen,et al.Evaluati-on of high proportion new energy microgrids participating in peak-shaving capacity of power grid[J].Power System and Clean Energy,2019,35(8):62-68+75.
    [4] 钱振宇,王泉,魏建民,等.考虑削减方法和最大化接纳能力的新能源准入容量柔性优化模型[J].智慧电力,2020,48(6):35-39+60.QIAN Zhenyu,WANG Quan,WEI Jianmin,et al.Flexible optimization model for newenergy access capacity consi-dering the method of electricity reduction and maximum acceptance[J].Smart Power,2020,48(6):35-39+60.
    [5] 张长久,贾清泉,赵铁军,等.考虑需求响应的增量配电网分布式电源优化配置[J].电力系统及其自动化学报,2020,32(8):7-16.ZHANG Changjiu,JIA Qingquan,ZHAO Tiejun,et al.Optimal configuration of distributed generations in incre-mental distribution network considering demand-side res-ponse[J].Proceedings of the CSU-EPSA,2020,32(8):7-16.
    [6] 姚建国,杨胜春,王珂,等.平衡风功率波动的需求响应调度框架与策略设计[J].电力系统自动化,2014,38(9):85-92.YAO Jianguo,YANG Shengchun,WANG Ke,et al.Fra-mework and strategy design of demand response schedule-ing for balancing wind power fluctuation[J].Automation of Electric Power Systems,2014,38(9):85-92.
    [7] 翟晶晶,吴晓蓓,傅质馨,等.考虑需求响应与光伏不确定性的综合能源系统鲁棒优化[J].中国电力,2020,53(8):9-18.ZHAI Jingjing,WU Xiaobei,FU Zhixin,et al.Robust optimization of integrated energy systems considering demand response and photovoltaic uncertainty[J].Electric Power,2020,53(8):9-18.
    [8] 张涛,章佳莹,王凌云,等.计及负荷侧响应的智能小区微网经济调度[J].电力科学与技术学报,2019,34(3):78-85.ZHANG Tao,ZHANG Jiaying,WANG Lingyun,et al.Optimal economic dispatch for intelligent community micro-grid considering load side demand response[J].Journal of Electric Power Science and Technology,2019,34(3):78-85.
    [9] 胡枭,闻旻,刘育权,等.基于用户侧能源转换设备的综合能源系统可靠性分析[J].电力科学与技术学报,2019,34(2):11-19.HU Xiao,WEN Min,LIU Yuquan,et al.Reliability assessment of integrated energy system based on user side conversion components[J].Journal of Electric Power Science and Technology,2019,34(2):11-19.
    [10] 李彬,曹望璋,马永红,等.计及倒换时延的需求响应业务P圈保护策略[J].中国电机工程学报,2019,39(10):2895-2904.LI Bin,CAO Wangzhang,MA Yonghong,et al.A P-cycle protection strategy of demand response service considering the protection switching latency[J].Proceedings of the CSEE,2019,39(10):2895-2904.
    [11] 彭文昊,陆俊,冯勇军,等.计及用户参与不确定性的需求响应策略优化方法[J].电网技术,2018,42(5):1588-1594.PENG Wenhao,LU Jun,FENG Yongjun,et al.A demand response strategy optimization considering user partici-pation uncertainty[J].Power System Technology,2018,42(5):1588-1594.
    [12] 米阳,李战强,吴彦伟,等.基于两级需求响应的并网微电网双层优化调度[J].电网技术,2018,42(6):1899-1906.MI Yang,LI Zhanqiang,WU Yanwei,et al.Bi-layer op-timal dispatch of grid-connected microgrid based on two-stage demand response[J].Power System Technology,2018,42(6):1899-1906.
    [13] 孙宇军,王岩,王蓓蓓,等.考虑需求响应不确定性的多时间尺度源荷互动决策方法[J].电力系统自动化,2018,42(2):106-113+159.SUN Yujun,WANG Yan,WANG Beibei,et al.Multi-time scale decision method for source-load interaction considering demand response uncertainty[J].Automation of Electric Power Systems,2018,42(2):106-113+159.
    [14] 陈永进.考虑园区能源互联网接入及其需求响应的配电网规划方法[J].广东电力,2019,32(10):45-52.CHEN Yongjin.Distribution network planning method co-nsidering park energy internet access and its demand des-ponse[J].Guangdong Electric Power,2019,32(10):45-52.
    [15] 孙丛丛,王致杰,江秀臣,等.计及需求响应的并网型微电网协同优化策略[J].电力系统及其自动化学报,2018,30(1):30-37.SUN Congcong,WANG Zhijie,JIANG Xiuchen et al.Collaborative optimization strategy for grid-connected microgrid considering demand response[J].Proceedings of the CSU-EPSA,2018,30(1):30-37.
    [16] 张禹森,孔祥玉,孙博伟,等.基于电力需求响应的多时间尺度家庭能量管理优化策略[J].电网技术,2018,42(6):1811-1819.ZHANG Yusen,KONG Xiangyu,SUN Bowei,et al.Multi-time scale home energy management strategy based on electricity demand response[J].Power System Technology,2018,42(6):1811-1819.
    [17] 郑洁云,胡梦月,胡志坚,等.考虑可靠性及需求响应的配电网规划模型[J].电力科学与技术学报,2019,34(3):173-182.ZHENG Jieyun,HU Mengyue,HU Zhijian,et al.Multi-objective planning model of distribution network conside-ring reliability and demand response[J].Journal of Electric Power Science and Technology,2019,34(3):173-182.
    [18] 郑亚锋,魏振华,高宇峰,等.多能流系统经济-节能多目标最优运行[J].电力系统及其自动化学报,2020,32(9):77-85.ZHENG Yafeng,WEI Zhenhua,GAO Yufeng,et al.Multi-objective optimal operation of multi-energy carrier system considering economy and energy conservation[J].Proceedings of the CSU-EPSA,2020,32(9):77-85.
    [19] 涂京,周明,李庚银,等.面向居民需求响应的售电公司势博弈分布式优化策略[J].中国电机过程学报,2020,40(2):400-411.TU Jing,ZHOU Ming,LI Gengyin,et al.A potential game based distributed optimization strategy for the electricity retailer considering residential demand response[J].Proceedings of the CSEE,2020,40(2):400-411.
    [20] 牛启帆,武鹏,张菁,等.考虑多设备最优能流路径的电—气互联系统运行优化[J].电力系统及其自动化学报,2020,32(7):109-116.NIU Qifan,WU Peng,ZHANG Jing,et al.Operation optimization of Electricity-Natural gas interconnected system considering the optimal energy flow path of multiple devices[J].Proceedings of the CSU-EPSA,2020,32(7):109-116.
    [21] 武赓,隆竹寒,曾博,等.计及用户行为的需求响应对分布式发电系统充裕度的影响[J].电力系统自动化,2018,42(8):119-126.WU Geng,LONG Zhuhan,ZENG Bo,et al.Influence of demand response on supply adequacy of distributed generation system considering behaviors of users[J].Automation of Electric Power Systems,2018,42(8):119-126.
    [22] 张煜,牟龙华,王蕴敏,等.计及可控负荷动态调节的主动配电网优化调度[J].电力系统保护与控制,2021,49(4):104-110.ZHANG Yu,MU Longhua,WANG Yunmin,et al.Optimal dispatching of an active distribution network considering dynamic regulation of controllable load[J].Power System Protection and Control,2021,49(4):104-110.
    [23] 谈竹奎,丁超,赵立进,等.用电负荷指纹管理的层次化系统设计[J].电测与仪表,2019,56(14):89-95.TAN Zhukui,DING Chao,ZHAO Linjin,et al.Hierarchical system design for dactylogram management of electricity use load[J].Electrical Measurement & Instrumentation,2019,56(14):89-95.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕振华,李强,韩华春,等.计及源荷不确定性和多类储能响应的园区IES多目标优化调度模型[J].电力科学与技术学报,2021,36(2):40-50.
Lv Zhenhua, Li Qiang, Han Huachun, et al. Multi-objective optimal scheduling model for IES in parks considering source and load uncertainties and multiple type of energy storage responses[J]. Journal of Electric Power Science and Technology,2021,36(2):40-50.

复制
分享
文章指标
  • 点击次数:328
  • 下载次数: 1212
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-05-08
文章二维码