考虑风电不确定性的分布鲁棒机会约束机组组合模型
CSTR:
作者:
中图分类号:

TM732

基金项目:

国家重点研发计划(2018YFC1505502-03);四川省科技计划(2018GZ0394);成都市科技局科技项目(2017-RKOO-0029-ZF)


Distributionally robust chance-constrained unit commitment model considering uncertainty of wind power
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | | | |
  • 文章评论
    摘要:

    风电渗透率的不断提高大大减少了化石燃料的消耗和温室气体的排放,但风电输出功率的不确定性和间歇性,使传统机组组合问题的解决方法不可行。在此背景下,为了描述风力发电的不确定性,首先,引入一个基于矩信息的椭球式模糊集,并将机会约束运用到机组组合模型中,将功率平衡约束变为软约束;其次,运用分布鲁棒优化方法,将机组组合问题通过线性化方法重构为混合整数线性规划(MILP)问题;并提出限定模糊集中的分布具有单峰性及分时段设定置信度的值的2种改进方法,提高模型的经济性,最后,通过案例分析和仿真结果验证模型与方法的实用性和可行性。

    Abstract:

    The continuous improvement of wind power penetration has greatly reduced the consumption of fossil fuels and greenhouse gas emissions. However, the uncertainty and intermittent nature of wind power make the solution to the traditional unit commitment infeasible. In order to describe the uncertainty of wind power generation, this paper introduces an ellipsoid ambiguty set based on moment information, and applies the chance constraint to the unit combination model to change the power balance constraint into a soft constraint. Then, the distributionally robust optimization method is utilized, and the unit commitment model is reformulated into a mixed integer linear programming problem by linearization method. In addition, two improved methods, the limiting the distribution of ambiguty set with unimodality and adjusting confidence level according to time, are proposed to improve the economics of the model. Finally, case analysis and numerical results verify the practicality and feasibility of the proposed model and method.

    参考文献
    [1] 宫娅宁,秦红,付洪斌,等.考虑源荷不确定性的光伏发电系统优化调度策略[J].电力科学与技术学报,2019,34(2):112-118.GONG Yaning,QIN Hong,FU Hongbin,et al.Optimal schedule strategy for photovoltaic generation system considering the uncertainty in source and load[J].Journal of Electric Power Science and Technology,2019,34(2):112-118.
    [2] 石玉东,刘晋源,徐松,等.考虑时序特性的配电网风—光—储随机规划模型[J].电力系统保护与控制,2019,47(10):23-32.SHI Yudong,LIU Jinyuan,XU Song,et al.Integrated wind-photovoltaic-storage stochastic planning model considering time-varying characteristics in distribution network[J].Power System Protection and Control,2019,47(10):23-32.
    [3] 李顺昕,岳云力,武冰清.与需求响应联合优化的联网型微电网储能容量随机规划[J].电网与清洁能源,2020,36(2):124-130.LI Shunxin,YUE Yunli,WU Bingqing.Grid-connected micro grid energy storage system capacitystochastic planning jointly optimized with demand response[J].Power System and Clean Energy,2020,36(2):124-130.
    [4] Blanco I,Morales J.An efficient robust solution to the two-stage stochastic unit commitment problem[J].IEEE Transations Power Systems,2017,32(6):4477-4487.
    [5] 田坤鹏,孙伟卿,韩冬,等.基于两阶段鲁棒优化的可再生能源DNE极限评估[J].电力系统保护与控制,2020,48(19):73-80.TIAN Kunpeng,SUN Weiqing,HAN Dong,et al.DNE limit assessment of renewable energy based on two-stage robust optimization[J].Power System Protection and Control,2020,48(19):73-80.
    [6] 刘明,曾成碧,苗虹.基于分布鲁棒机会约束的机组组合模型[J].电测与仪表,2021,58(1):32-36.LIU Ming,ZENG Chenbi,MIAO Hong.Unit commitment with distributionally robust chance constraints[J].Electrical Measurement & Instrumentation,2021,58(1):32-36.
    [7] 唐伦,姚力,肖畅,等.考虑风电不确定性和机组故障停运风险的两阶段鲁棒机组组合[J].智慧电力,2021,49(2):47-53.TANG Lun,YAO Li,XIAO Chang,et al.Twostage robust unit commitment for uncertainty of wind power and generator outagecontingency[J].Smart Power,2021,49(2):47-53.
    [8] Zhao C,Guan Y.Unified stochastic and robust unit commitment[J].IEEE Transations Power Systems,2013,28(3):3353-3361.
    [9] 翟晶晶,吴晓蓓,傅质馨,等.考虑需求响应与光伏不确定性的综合能源系统鲁棒优化[J].中国电力,2020,53(8):9-18.ZHAI Jingjing,WU Xiaobei,FU Zhixin,et al.Robust optimization of Integrated energy systems considering demand response and photovoltaic uncertainty[J].Electric Power,2020,53(8):9-18.
    [10] Nemirovski A,Shapiro A.Convex approximations of chance constrained programs[J].SIAM Journal on Optimization,2006,17(4):969-996.
    [11] 肖凯超,邱伟强,陶以彬,等.储能应急车优化调度的模糊机会约束方法[J].高压电器,2021,57(2):116-124.XIAO Kaichao,QIU Weiqiang,TAO Yibin,et al.Fuzzy chance constrained method for optimal scheduling of mobile energy storage system in emergency support of power systems[J].High Voltage Apparatus,2021,57(2):116-124.
    [12] Wang Q,Wang J,Guan Y.Stochastic unit commitment with uncertain demand response[J].IEEE Transactions on Power Systems,2013,28(1):562-563.
    [13] Chen Y,Guo Q,Sun H.A distributionally robust optimization model for unit commitment based on kullback-leibler divergence[J].IEEE Transactions on Power Systems,2018,33(5):5147-5160.
    [14] Xiong P,Jirutitijaroen P,Singh C.A distributionally robust optimization model for unit commitment considering uncertain wind power generation[J].IEEE Transations Power Systems,2017,32(1):39-49.
    [15] Zhao Chaoyue,Jiang Ruiwei.Distributionally robust contingency-constrained unit commitment[J].IEEE Transations Power Systems,2018,33(1):94-102.
    [16] 税月,刘俊勇,高红均,等.考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型研究[J].中国电机工程学报,2018,38(24):7235-7247.SHUI Yue,LIU Junyong,GAO Hongjun,et al.A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J].Proceedings of the CSEE,2018,38(24):7235-7247.
    [17] Wu Z,Zeng P,Zhang X.A solution to the chance-constrained two-stage stochastic program for unit commitment with wind energy integration[J].IEEE Transations Power Systems,2016,31(6):4185-4196.
    [18] Shi Zhichao,Liang Hao,Huang Shengjun,et al.Distributionally robust chance-constrained energy management for islanded microgrids[J].IEEE Transactions on Smart Grid,2019,10(2):2234-2244.
    [19] 吴小珊,张步涵,袁小明,等.求解含风电场的电力系统机组组合问题的改进量子离散粒子群优化方法[J].中国电机工程学报,2013,33(4):45-52.WU Xiaoshan,ZHANG Buhan,YUAN Xiaoming,et al.Solutions to unit commitment problems in power systems with wind farms using advanced quantum-inspired binary PSO[J].Proceedings of the CSEE,2013,33(4):45-52.
    [20] Soroudi A.Power system optimization modeling in GAMS[M].Cham:Springer,2017:119-125.
    [21] Zhang Yiling,Jiang Ruiwei,Shen Siqian.Ambiguous chance-constrained binary programs under mean-covariance information[J].SIAM Journal on Optimization,2018,28(4):2922-2944.
    [22] Li B,Jiang R,Mathieu J R.Distributionally robust risk constrained optimal power flow using moment and unimodality information[C]//IEEE 55th Conference on Decision and Control(CDC),Las Vegas,NV,USA,2016.
    [23] Wang Z,Bian Q,Xin H,et al.A distributionally robust coordinated reserve scheduling model considering cvar-based wind power reserve requirements[J].IEEE-Transations Sustainable Energy,2016,7(2):625-636.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘明,曾成碧,苗虹.考虑风电不确定性的分布鲁棒机会约束机组组合模型[J].电力科学与技术学报,2021,36(2):51-57.
Liu Ming, Zeng Chengbi, Miao Hong. Distributionally robust chance-constrained unit commitment model considering uncertainty of wind power[J]. Journal of Electric Power Science and Technology,2021,36(2):51-57.

复制
分享
文章指标
  • 点击次数:420
  • 下载次数: 1270
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-05-08
文章二维码