基于网格划分的电动汽车充电负荷预测方法
作者:
作者单位:

作者简介:

通讯作者:

袁小溪(1993-),女,硕士,工程师,主要从事电动汽车充换电设施规划研究;E-mail:bjdky2017@126.com

中图分类号:

TM715

基金项目:

国网北京市电力公司科技项目(520223200062);国家重点研发计划(2016YFB0900505)


Prediction method of electric vehicle charging load based on grid division
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确的电动汽车充电负荷时空分布预测模型是解决电动汽车并网造成的影响和研究充电设施规划的重要基础。为解决现有充电设施数量有限、布局不合理等因素造成的历史充电数据不能正确体现电动汽车实际充电需求的问题,提出一种基于网格划分的电动汽车充电负荷预测方法。首先对预测区域进行网格划分,再结合电力系统负荷预测方法,以网格为空间预测单元,利用含充电设施网格的预测指标和充电负荷的历史数据,通过贝叶斯正则化 BP神经网络算法建立电动汽车充电负荷和影响因素之间的关系,以最终预测不含充电设施网格的充电需求。最后以北京市海淀区为例对提出的预测方法进行验证分析。仿真结果表明,该预测方法能够较准确地对电动汽车充电负荷进行时空分布预测。

    Abstract:

    Accurate spatial and temporal distribution prediction model for electric vehicle charging load is an important basis for dealing with the impact of electric vehicle connected to the grid and researching charging facility planning. Due to the limited number and the unreasonable layout of existing charging facilities, the historical electric charging load data can not reflect the actual charging demand of electric vehicles explicitly. Under the background, a load forecasting method of power system is proposed based on the grid division. Firstly, the prediction region is divided into block that is taken as the spatial prediction unit. Then, the charging load of block with charging facilities and the history data of prediction indicators are utilized to assign historical charging data in blocks with charging facilities to each block. Secondly, a relationship between charging load and influencing factors is established by employing Bayesian regularization BP neural network algorithm. Finally, Haidian District of Beijing is considered for simulation to verify the proposed prediction method. It is shown that this method can accurately predict the spatial and temporal distribution of the electric vehicle charging load.

    参考文献
    相似文献
    引证文献
引用本文

袁小溪,潘鸣宇,段大鹏,等.基于网格划分的电动汽车充电负荷预测方法[J].电力科学与技术学报,2021,36(3):19-26.
Yuan Xiaoxi, Pan Mingyu, Duan Dapeng, et al. Prediction method of electric vehicle charging load based on grid division[J]. Journal of Electric Power Science and Technology,2021,36(3):19-26.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-26
  • 出版日期:
文章二维码