基于网格划分的电动汽车充电负荷预测方法
CSTR:
作者:
通讯作者:

袁小溪(1993-),女,硕士,工程师,主要从事电动汽车充换电设施规划研究;E-mail:bjdky2017@126.com

中图分类号:

TM715

基金项目:

国网北京市电力公司科技项目(520223200062);国家重点研发计划(2016YFB0900505)


Prediction method of electric vehicle charging load based on grid division
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    准确的电动汽车充电负荷时空分布预测模型是解决电动汽车并网造成的影响和研究充电设施规划的重要基础。为解决现有充电设施数量有限、布局不合理等因素造成的历史充电数据不能正确体现电动汽车实际充电需求的问题,提出一种基于网格划分的电动汽车充电负荷预测方法。首先对预测区域进行网格划分,再结合电力系统负荷预测方法,以网格为空间预测单元,利用含充电设施网格的预测指标和充电负荷的历史数据,通过贝叶斯正则化 BP神经网络算法建立电动汽车充电负荷和影响因素之间的关系,以最终预测不含充电设施网格的充电需求。最后以北京市海淀区为例对提出的预测方法进行验证分析。仿真结果表明,该预测方法能够较准确地对电动汽车充电负荷进行时空分布预测。

    Abstract:

    Accurate spatial and temporal distribution prediction model for electric vehicle charging load is an important basis for dealing with the impact of electric vehicle connected to the grid and researching charging facility planning. Due to the limited number and the unreasonable layout of existing charging facilities, the historical electric charging load data can not reflect the actual charging demand of electric vehicles explicitly. Under the background, a load forecasting method of power system is proposed based on the grid division. Firstly, the prediction region is divided into block that is taken as the spatial prediction unit. Then, the charging load of block with charging facilities and the history data of prediction indicators are utilized to assign historical charging data in blocks with charging facilities to each block. Secondly, a relationship between charging load and influencing factors is established by employing Bayesian regularization BP neural network algorithm. Finally, Haidian District of Beijing is considered for simulation to verify the proposed prediction method. It is shown that this method can accurately predict the spatial and temporal distribution of the electric vehicle charging load.

    参考文献
    [1] 程杉,陈梓铭,徐康仪,等.基于合作博弈与动态分时电价的电动汽车有序充放电方法[J].电力系统保护与控制,2020,48(21):15-21.CHENG Shan,CHEN Ziming,XU Kangyi,et al.An orderly charging and discharging method for electric vehicles based on a cooperative game and dynamic timeofuse price[J].Power System Protection and Control,2020,48(21):15-21.
    [2] 张钰,张玥,韩新阳,等.碳排放最小化条件下电动汽车有序充电策略研究[J].中国电力,2020,53(4):147-154.ZHANG Jue,ZHANG Yue,HAN Xinyang,et al.Research on electric vehicle smart charging strategy on carbon emission minimization[J].Electric Power,2020,53(4):147-154.
    [3] 常小强,宋政湘,王建华.基于蒙特卡罗算法的电动汽车充电负荷预测及系统开发[J].高压电器,2020,56(8):15.CHANG Xiaoqiang,SONG Zhengxiang,WANG Jianhua.Electric vehicle charging load prediction and system development based on monte carlo algorithm[J].High Voltage Apparatus,2020,56(8):15.
    [4] 倪凯旋.基于分布式博弈的电动汽车充电站最优调度方法[J].供用电,2020,37(2):79-84.NI Kaixuan.Optimal scheduling of electric vehicle charging station based on distributed game[J].Distribution & Utilization,2020,37(2):79-84.
    [5] 余军伟,孙云莲,张笑迪.考虑发展不均衡的电动汽车充电负荷预测[J].电测与仪表,2019,56(5):43-50.YU Junwei,SUN Yunlian,ZHANG Xiaodi.Charging load forecasting considering the unbalanced development of EV[J].Electrical Measurement & Instrumentation,2019,56(5):43-50.
    [6] 范晋衡,刘琦颖,曲大鹏,等.考虑电动汽车充电负荷的配电网运行风险控制与优化[J].电网与清洁能源,2020,36(9):105-112+121.FAN Jinheng,LIU Qiying,QU Dapeng,et al.Control and optimization of operation risk of distribution network considering electric vehicle charging load[J].Power System and Clean Energy,2020,36(9):105-112+121.
    [7] 钱科军,刘乙,张新松,等.考虑电动汽车充电负荷的配电系统场景概率潮流分析[J].电力系统保护与控制,2020,48(24):62-70.QIAN Kejun,LIU Yi,ZHANG Xinsong,et al.Scenariobased probabilistic power flow calculation of distribution systems withelectric vehicle charging loads[J].Power System Protection and Control,2020,48(24):62-70.
    [8] Shan J,Lei W,Ning J,et al.Research on factors that influence the charging load of electric vehicles and modeling of the load[C]//2016 IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC),Xi'an,China:IEEE,2016:1412-1415.
    [9] Su S,Zhao H,Zhang H Z,et al.Forecast of electric vehicle charging demand based on traffic flow model and optimal path planning[C]//2017 19th International Conference on Intelligent System Application to Power Systems(ISAP),TX,USA:IEEE,2017:16.
    [10] 许威,吕林,许立雄,等.基于马尔可夫链的电动汽车充电需求计算[J].电力系统及其自动化学报,2017,29(3):1219.XU Wei,LV Lin,XU Lixiong,et al.Calculation of charging demand from electric vehicles based on Markov chain[J].Proceedings of the CSUEPSA,2017,29(3):12-19.
    [11] 张谦,王众,谭维玉,等.基于MDP随机路径模拟的电动汽车充电负荷时空分布预测[J].电力系统自动化,2018,42(20):59-66.ZHANG Qian,WANG Zhong,TAN Weiyu,et al.Spatialtemporal distribution prediction of charging load for electric vehicles based on MDP random path simulation[J].Automation of Electric Power Systems,2018,42(20):59-66.
    [12] 周国鹏,傅军,李雪梅,等.基于灰色模型的电动汽车充电需求预测研究[J].电气应用,2017,36(10):83-87.ZHOU Guopeng,FU Jun,LI Xuemei,et al.Research on electric vehicle charging demand prediction based on grey model[J].Electrotechnical Application,2017,36(10):8387.
    [13] Xu X B,Liu W X,Zhou X,et al.Shortterm load forecasting for the electric bus station based on GRADESVR[C]//2014 IEEE Innovative Smart Grid TechnologiesAsia(ISGT ASIA),Kuala Lumpur,Malaysia:IEEE,2014:388-393.
    [14] Wang S J,Xue G B,Chang P,et al.The application of forecasting algorithms on electric vehicle power load[C]//2018 IEEE International Conference on Mechatronics and Automation(ICMA),Changchun,China:IEEE,2018:1371-1375.
    [15] 杨海深,傅红卓.基于贝叶斯正则化BP神经网络的股票指数预测[J].科学技术与工程,2009,9(12):3306-3310.YANG Haishen,FU Hongzhuo.Stock index forecast based on Bayesian regularization BP neural network [J].Science Technology and Engineering,2009,9(12):3306-3310.
    [16] 李元诚,白恺,曲洪达,等.基于粒子群稀疏贝叶斯混合算法的光伏功率预测方法[J].太阳能学报,2016,37(5):1153-1159.LI Yuancheng,BAI Kai,QU Hongda,et al.A photovoltaic power forecasting model using sparse Bayesian regression optimized by particle swarm algorithm [J].Acta Energiae solaris Sinica,2016,37(5):1153-1159.
    [17] 单莹.通化市停车需求预测研究[D].长春:吉林大学,2017.
    [18] 赵堃,李晓婷,李远卓,等.考虑电动汽车充电需求的城市配电网负荷预测[J].华北电力技术,2017(11):15.ZHAO Kun,LI Xiaoting,LI Zhuoyuan,et al.Urban distribution network load forecasting considering electric vehicle charging demand[J].North China Electric Power,2017(11):15.
    [19] 苏小林,张艳娟,武中,等.规模化电动汽车充电负荷的预测及其对电网的影响[J].现代电力,2018,35(1):45-54.SU Xiaolin,ZHANG Yanjuan,WU Zhong,et al.Forecasting the charging load of largescale electric vehicle and its impact on the power grid[J].Modern Electric Power,2018,35(1):45-54.
    [20] 王衡.探讨电动汽车充电设施规划方式[J].军民两用技术与产品,2017(10):36-37.WANG Heng.Discussion on electric vehicle charging facility planning[J].Dual Use Technology & Products,2017(10):36-37.
    [21] Funahashi K.On the approximate realization of continuous mappings by neural networks[J].Neural Networks,1989,2(3):183-192.
    [22] 黄宇鹏,李立新,王磊,等.基于神经网络的电网运行趋势估计算法及应用[J].智慧电力,2019,47(6):113-120.HUANG Yupeng,LI Lixin,WANG Lei,et al.Power network operation trend estimation algorithm based on neutral network and its application[J].Smart Power,2019,47(6):113-120.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁小溪,潘鸣宇,段大鹏,等.基于网格划分的电动汽车充电负荷预测方法[J].电力科学与技术学报,2021,36(3):19-26.
Yuan Xiaoxi, Pan Mingyu, Duan Dapeng, et al. Prediction method of electric vehicle charging load based on grid division[J]. Journal of Electric Power Science and Technology,2021,36(3):19-26.

复制
分享
文章指标
  • 点击次数:253
  • 下载次数: 906
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-08-26
文章二维码