考虑风速波动特性的VMD-GRU短期风电功率预测
CSTR:
作者:
中图分类号:

TM614

基金项目:

国家重点研发计划(2018YFB0904200);北京市自然科学基金(3172015);国家电网有限公司科技项目(SGLNDKOOKJJS1800266); 北京市教委科技计划面上项目(KM201911232016)


VMD-GRU based shortterm wind power forecast considering wind speed fluctuation characteristics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • | | | |
  • 文章评论
    摘要:

    提高风电功率预测的精准度能为大规模风电并网提供安全保障,为此提出一种考虑风速波动特性的短期风电功率组合预测方法。首先,定义5种风速波动类型,对数值天气预报中的历史风速序列进行波动类型划分,得到不同风速波动类型的天气时段;其次,将这些天气时段对应的历史风电功率序列进行分类,采用变分模态分解算法对各类风电功率序列进行分频计算,得到特征、频段互异的多个子模态;然后,利用门控循环单元神经网络建立每个子模态预测模型,将各个子模态预测结果进行叠加,得到风电功率预测值;最后,对待测时段的风速序列进行波动类型划分和识别,选取相匹配的功率预测模型计算出最终预测值。利用某实际风电场的数值天气预报风速数据和功率数据进行仿真分析,验证所提组合预测方法的有效性。

    Abstract:

    The accuracy of wind power prediction can improve the security environment of largescale wind power integration. Under the background, a combined approach considering wind speed fluctuation characteristics for shortterm wind power forecasting is proposed in this paper. Firstly, five types of wind speed fluctuations are defined, and the fluctuation type of historical wind speed series in numerical weather prediction is divided to get the time period of different wind speed fluctuation types. Secondly, the historical wind power series corresponding to these time periods are classified, and the variational mode decomposition algorithm is used to deal with various types of wind power series for obtaining multiple submodalities with different characteristics and frequency bands. Thirdly, a prediction model based on the gated recurrent unit neural network is constructed for each submode, and the prediction results of each submode are added to obtain the predicted value of the wind power. Finally, the wind speed series of the forecasted day is identified from the types of fluctuation, and the matching power prediction model is selected to calculate the final prediction value. The wind speed data in the numerical weather prediction and power data of an actual wind farm are used for simulation analysis to verify the effectiveness of the proposed combined forecasting method.

    参考文献
    [1] 施涛,李春来,朱慧敏.考虑功率预测不确定性的风电消纳随机调度[J].电网与清洁能源,2019,35(4):55-59.SHI Tao,LI Chunlai,ZHU Huimin.Stochastic dispatching of wind power accommodation consideringuncertainty of power prediction[J].Power System and Clean Energy,2019,35(4):55-59.
    [2] 杨茂,张罗宾.基于数据驱动的超短期风电功率预测综述[J].电力系统保护与控制,2019,47(13):171-186.YANG Mao,ZHANG Luobin.Review on ultrashort term wind power forecasting based on datadriven approach[J].Power System Protection and Control,2019,47(13):171-186.
    [3] 叶林,滕景竹,蓝海波,等.变尺度时间窗口和波动特征提取的短期风电功率组合预测[J].电力系统自动化,2017,41(17):29-36+59.YE Lin,TENG Jingzhu,LAN Haibo,et al.Combined prediction for shortterm wind power based on variable time window and feature extraction[J].Automation of Electric Power Systems,2017,41(17):29-36+59.
    [4] 丁明,缪乐颖,车建峰,等.基于波动过程匹配技术的短期风电功率预测[J].电网技术,2018,42(11):3652-3659.DING Ming,MIAO Leying,CHE Jianfeng,et al.Shortterm wind power forecasting based on fluctuation process matching technology[J].Power System Technology,2018,42(11):3652-3659.
    [5] 熊音笛,刘开培,秦亮,等.基于时序数据动态天气划分的短期风电功率预测方法[J].电网技术,2019,43(9):3353-3359.XIONG Yindi,LIU Kaipei,QIN Liang,et al.Shortterm wind power prediction method based on dynamic wind power weather division of time sequence data[J].Power System Technology,2019,43(9):3353-3359.
    [6] 张鑫磊,李根.基于IEEMD与LSSVM组合的短期风电功率多步预测方法[J].电测与仪表,2020,57(6):52-60.ZHANG Xinlei,LI Gen.Multistep prediction method of shortterm wind power based onthe IEEMD and LSSVM[J].Electrical Measurement & Instrumentation,2020,57(6):52-60.
    [7] 刘强,胡志强,周宇,等.基于CEEMD和随机森林算法的短期风电功率预测[J].智慧电力,2019,47(6):71-76+94.LIU Qiang,HU Zhiqiang,ZHOU Yu,et al.Shortterm wind power forecasting based on CEEMD and Random forest algorithm[J].Smart Power,2019,47(6):71-76+94.
    [8] 何廷一,田鑫萃,李胜男,等.基于蜂群算法改进的BP神经网络风电功率预测[J].电力科学与技术学报,2018,33(4):22-28.HE Tingyi,TIAN Xincui,LI Shengnan,et al.Improved BP neural network based on artificial bee colony algorithm for wind power prediction[J].Journal of Electric Power Science and Technology,2018,33(4):22-28.
    [9] 马愿,张倩,李国丽,等.基于频域分解的短期负荷预测研究分析[J].中国电力,2020,53(4):114-121.MA Yuan,ZHANG Qian,LI Guoli,et al.Research and analysis of shortterm load forecasting based on frequency domain decomposition[J].Electric Power,2020,53(4):114-121.
    [10] 张雨金,杨凌帆,葛双冶,等.基于KmeansSVM的短期光伏发电功率预测[J].电力系统保护与控制,2018,46(21):118-124.ZHANG Yujin,YANG Lingfan,GE Shuangye,et al.Shortterm photovoltaic power forecasting based on Kmeans algorithm and support vector machine[J].Power System Protection and Control,2018,46(21):118-124.
    [11] 朱抗,杨洪明,孟科.基于极限学习机的短期风力发电预测[J].电力科学与技术学报,2019,34(2):106-111.ZHU Kang,YANG Hongming,MENG Ke.Shortterm wind power forecast using extreme learning machine[J].Journal of Electric Power Science and Technology,2019,34(2):106-111.
    [12] Zhang Chu,Zhou Jianzhong,Li Chaoshun,et al.A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting[J].Energy Conversion and Management,2017,143:360-376.
    [13] Liu Hui,Mi Xiwei,Li Yanfei.Wind speed forecasting method based on deep learning strategy using empirical wavelet transform,long short term memory neural network and Elman neural network[J].Energy Conversion and Management,2018,156:498-514.
    [14] 牛哲文,余泽远,李波,等.基于深度门控循环单元神经网络的短期风功率预测模型[J].电力自动化设备,2018,38(5):36-42.NIU Zhewen,YU Zeyuan,LI Bo,et al.Shortterm wind power forecasting model based on deep gated recurrent unit neural network[J].Electric Power Automation Equipment,2018,38(5):36-42.
    [15] Zhao Jing,Guo Yanling,Xiao Xia,et al.Multistep wind speed and power forecasts based on a WRF simulation on and an optimized association method[J].Applied Energy,2017,197:183-202.
    [16] Konstantin Dragomiretskiy,Dominique Zosso.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.
    [17] 魏乐,李思莹.基于MEEMDLSSVM的风电功率超短期预测研究[J].智慧电力,2020,48(5):21-26.WEI Le,LI Siying.Ultrashortterm forecast for wind power based on MEEMDLSSVM[J].Smart Power,2020,48(5):21-26.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王鑫,李慧,叶林,等.考虑风速波动特性的VMD-GRU短期风电功率预测[J].电力科学与技术学报,2021,36(4):20-28.
Wang Xin, Li Hui, Ye Lin, et al. VMD-GRU based shortterm wind power forecast considering wind speed fluctuation characteristics[J]. Journal of Electric Power Science and Technology,2021,36(4):20-28.

复制
分享
文章指标
  • 点击次数:258
  • 下载次数: 1514
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-08-28
文章二维码