基于行为倾向的变电站人身风险量化方法
CSTR:
作者:
中图分类号:

TM08

基金项目:

国家自然科学基金(51877012);国网湖南省电力有限公司科技项目(5216A318000T)


A method of quantifying substation personal risks based on behavioural tendencies
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    尽管当前电力系统智能化程度不断提高,但仍需电力系统作业人员直接参与运维检修工作。因此,研究有效量化人身风险对保障作业人员安全具有重要的现实意义。在深入探讨已有电力系统作业人员人身风险量化模型基础上,考虑当前风险危害值确定方法不足和人为选择倾向现象对人身风险量化的影响,提出基于行为倾向的变电站人身风险量化方法。该方法对风险危害值做进一步细分,并采用 Bootstrap方法对风险危害值的平均数进行处理,模拟统计的不确定性;对风险评估中易出现人为选择倾向的问题,利用前景理论在风险值前乘以一个行为倾向系数ω,来反映管理者在面对事件风险值不同时的应对心理。结果表明,该文方法能更有效地量化人身风险,可为管理人员制定更符合实际的风险应对策略和资源分配方案提供参考,进一步保障现场检修人员的作业安全。

    Abstract:

    Although the intelligence level of the power system is constantly improving, the operation, maintenance and repair work still require the direct participation of electricity workers, so it is of great significance to study the effective quantification of personal risks to ensure the safety of workers.Based on profoundly discussing the quantification model of personal risks of the workers in power systems, this paper proposes a quantification method of personal risks in a substation based on behavioral tendency, considering the influence of the insufficient method of determining the risk hazard value and the phenomenon of artificial selection tendency on the quantification of personal risks. The hazard value was further subdivided, and the mean of hazard value was processed by the Bootstrap method to simulate statistical uncertainty. For the problem of artificial selection tendency in risk assessment, the prospect theory is used to multiply the value of risk by a coefficient of behavioral tendency ω, so as to reflect the response psychology of managers when facing events with different risk values.The results show that this method is more effective in quantifying personal risks, which can provide references for managers to carry out practical risk response strategies and resource allocation schemes, and further guarantee the safety of operation workers.

    参考文献
    [1] 郭国栋,龚雁峰,吴迪,等.引入HoloLens进行信息融合与数据挖掘的新型巡检方式及体验[J].中国电力,2021,54(7):208-216.GUO Guodong,HONG Yanfeng,WU Di,et al.New inspection method and experience by introducing HoloLens into information fusion and data mining[J].Electric Power,2021,54(7):208-216.
    [2] 郭杨,陈昊.激光导航智能机器人巡检系统在特高压变电站的应用[J].电力工程技术,2017,36(4):125-130.GUO Yang,CHEN Hao.Intelligent robot in section system based on laser navigation in UHV substation[J].Electric Power Engineering Technology,2017,36(4):125-130.
    [3] 彭向阳,金亮,王锐,等.变电站机器人智能巡检技术及应用效果[J].高压电器,2019,55(4):223-232.PENG Xiangyang,JIN Liang,WANG Rui,et al.Substation robot intelligent inspection technology and its application[J].High Voltage Apparatus,2019,55(4):223-232.
    [4] 陈碧云,李欣桐,李滨,等.考虑人因风险的电力调度值班操作任务分配方法[J].电力系统保护与控制,2019,47(21):156-162.CHEN Biyun,LI Xintong,LI Bin,et al.Assignment method of power dispatching tasks considering human risk[J].Power System Protection and Control,2019,47(21):156-162.
    [5] 唐俊熙,何迪.基于模糊综合评估的电网人因可靠性分析[J].电力科学与技术学报,2017,32(3):63-68.TANG Junxi,HE Di.Analysis of human reliability in power grid based on fuzzy synthetic evaluation[J].Journal of Electric Power Science and Technology,2017,32(3):63-68.
    [6] 国家能源局.2019年12月事故通报及年度事故分析报告[EB/OL].http://www.nea.gov.cn/202002/25/c_138816441.htm,20200225.
    [7] 张珂斐,郭江,陈红坤.基于全维度的电力变压器智能决策支持系统研究[J].电测与仪表,2019,56(13):33-38+85.ZHANG Kefei,GUO Jiang,CHEN Hongkun.Research on decision support system of transformer based on full dimension method[J].Electrical Measurement & Instrumentation,2019,56(13):33-38+85.
    [8] 曲朝阳,杨琴.基于贝叶斯网络的智能变电站风险关联模型[J].电力系统自动化,2016,40(2):95-99.QU Zhaoyang,YANG Qin.Risk associated model of smart substations based on Bayesian network[J].Automation of Electric Power Systems,2016,40(2):95-99.
    [9] 卢扬,李永丽.考虑隐性故障的单一保护装置风险评估[J].电力系统及其自动化学报,2018,30(4):84-90.LU Yang,LI Yongli.Risk assessment on singleprotection equipment considering hidden failures[J].Proceedings of the CSUEPSA,2018,30(4):84-90.
    [10] 杨悦群.电力作业人身风险量化评估模型[D].广州:华南理工大学,2015.
    [11] 魏秀宁,柳亦钢,黄玉龙,等.供电作业人身事故危害多元线性回归预测[J].中国安全生产科学技术,2015,11(7):178-184.WEI Xiuning,LIU Yigang,HUANG Yulong,et al.Prediction on human casualty hazard in powersupplying operation based on multiple linear regression[J].Journal of Safety Science and Technology,2015,11(7):178-184.
    [12] 梁广,张勇军,黎浩,等.变电运行人因事故分析的拟REASON模型[J].继电器,2008,36(3):23-26.LIANG Guang,ZHANG Yongjun,LI Hao,et al.Quasireason model for human errors analysis in substation operation[J].Relay,2008,36(3):23-26.
    [13] 孙多勇.突发性社会公共危机事件下个体与群体行为决策研究[D].长沙.国防科学技术大学,2005.
    [14] 何红渠,肖瑛.基于期望理论的纳税遵从行为研究[J].财经研究,2005(3):100-108.HE Hongqu,XIAO Ying.The study of tax compliance based on prospect theory[J].Journal of Finance and Economics,2005(3):100-108.
    [15] Efron Bradley.Bootstrap methods:Another look at the jackknife[J].The Annals of Statistics,1979,7(1):126.
    [16] 谢益辉,朱钰.Bootstrap方法的历史发展和前沿研究[J].统计与信息论坛,2008,23(2):90-96.XIE Yihui,ZHU Yu.Bootstrap methods:Developments and frontiers[J].Statistics & Information Forum,2008,23(2):90-96.
    [17] 唐小松,李典庆,曹子君,等.有限数据条件下边坡可靠度分析的Bootstrap方法[J].岩土力学,2016,37(3):893-911.TANG Xiaosong,LI Dianqing,CAO Zijun,et al.A Bootstrap method for analyzing slope reliability based on limited shearstrength parameter data[J].Rock and Soil Mechanics,2016,37(3):893-911.
    [18] Efron B,Tibshirani R J.An introduction to the Bootstrap[M].New York:Chapman & Hall,1993:86-103.
    [19] Kahneman D,Tversky A.Prospect theory:An analysis of decision under risk[J].Economica,1979,47(2):263-291.
    [20] Wu G,Gonzalez R.Curvature of the probability weighting function[J].Management Science,1996,42(12):1676-1690.
    [21] AlNowaihi A,Bradley I,Dhami S.A note in the utility function prospect theory[J].Economics Letters,2008,99(2):337-339.
    [22] 何大安.理性选择向非理性选择转化的行为分析[J].经济研究,2005(8):73-83.HE Daan.A behavioral analysis of the transformation from rational choiceto irrational choice[J].Economic Research Journal,2005(8):73-83.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋毅,段芳铮,潘志敏,等.基于行为倾向的变电站人身风险量化方法[J].电力科学与技术学报,2021,36(4):37-43.
Jiang Yi, Duan Fangzheng, Pan Zhimin, et al. A method of quantifying substation personal risks based on behavioural tendencies[J]. Journal of Electric Power Science and Technology,2021,36(4):37-43.

复制
分享
文章指标
  • 点击次数:225
  • 下载次数: 822
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-08-28
文章二维码