基于故障树及贝叶斯网络的继电保护系统风险评估及故障定位方法
CSTR:
作者:
中图分类号:

TM731

基金项目:

国家电网公司科技项目(5100-201955016A-0-0-00)


Fault positioning and risk assessment method of relay protection based on fault tree and Bayesian network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    继电保护系统故障树是保护系统危险性辨识和评价的重要工具。针对故障树顶级事件发生率难以精确获取、故障树不能进行反向推理等不足,提出基于故障树和贝叶斯网络的继电保护故障风险评估方法:正向上,依据保护实时运行数据确定贝叶斯网络根节点(对应故障树基本事件)故障状态,结合贝叶斯网络推理给出贝叶斯网络叶节点(对应故障树顶级事件)的故障概率,实现保护系统的先验风险预测;反向上,由贝叶斯网络叶节点故障,结合贝叶斯条件概率公式,计算贝叶斯网络根节点的故障概率,实现故障原因的后验定位及溯源。所提方法为提高保护系统可靠性和进行故障诊断提供依据。

    Abstract:

    The fault tree of the relay protection system is an important tool for risk identification and evaluation of the system. To solve the difficulty in precisely obtaining the toplevel event rate of fault tree, and the inability of reverse reasoning of fault trees, a fault risk assessment method for relay protection which is based on the fault tree and the Bayesian network is proposed. In the positive direction, the fault state of the root nodes in the Bayesian network (corresponding to the basic event of the fault tree) can be confirmed according to the realtime operational data of relay protection. Combined with by the Bayesian network reasoning, the fault probability of the leaf node of Bayesian network (corresponding to the top event of the fault tree) can then be generated, thus to realize the risk prediction of the protection system. In the reserve direction, the leaf nodes of Bayesian network are combined with the Bayesian conditional probability formula, to calculate the failure probability of the root nodes of the Bayesian network, therefore the positioning and tracing of the fault cause can be achieved. The proposed method can provide bases for the reliability improvement and the fault diagnosis of the protection system.

    参考文献
    [1] 杨国生,戴飞扬,王文焕,等.基于灰度关联法和TOPSIS法的继电保护状态评估综合算法研究与应用[J].中国电力,2019,52(2):94-103.YANG Guosheng,DAI Feiyang,WANG Wenhuan,et al.Research and application of comprehensive algorithm of relay protection status assessment based on gray correlation analysis and TOPSIS method[J].Electric Power,2019,52(2):94-103.
    [2] 刘宇阳,龚庆武,梁志远.基于改进GO法的继电保护系统可靠性分析[J].电力科学与技术学报,2016,31(4):129-135.LIU Yuyang,GONG Qingwu,LIANG Zhiyuan.Reliability analysis for protection system with the advanced GO method[J].Journal of Electric Power Science and Technology,2016,31(4):129-135.
    [3] 叶远波,刘宏君,张兆云,等.基于广域信息的继电保护实时评价研究[J].电力系统保护与控制,2021,49(13):150-157.YE Yuanbo,LIU Hongjun,ZHANG Zhaoyun,et al.Research on realtime evaluation of relay protection based on wide area information[J].Power System Protection and Control,2021,49(13):150-157.
    [4] 徐长宝,王玉磊,赵立进,等.基于信息趋势预测和组合赋权的智能变电站继电保护系统状态模糊综合评价[J].电力自动化设备,2018,38(1):162-168.XU Changbao,WANG Yulei,ZHAO Lijin,et al.Fuzzy comprehensive evaluation of intelligent substation relay protection system state based on information trend prediction and combination weighting[J].Electric Power Automation Equipment,2018,38(1):162-168.
    [5] 何云良,裘愉涛,吴路明,等.基于5G通信的继电保护技术研究[J].电力系统保护与控制,2021,49(7):31-38.HE Yunliang,QIU Yutao,WU Luming,et al.Research on relay protection based on 5G communication technology[J].Power System Protection and Control,2021,49(7):31-38.
    [6] 龙翩翩,蔡泽祥,张延旭,等.智能变电站继电保护信息交互失效模型与薄弱环节分析[J].电力科学与技术学报,2017,32(1):29-36.LONG Pianpian,CAI Zexiang,ZHANG Yanxu,et al.Analysis of failure mode and weak points for relay protection information interaction in smart substation[J].Journal of Electric Power Science and Technology,2017,32(1):29-36.
    [7] 杨建新,王一栋,刘东英.330 kV变电站主变继电保护系统及自动灭火系统的设计和实施[J].电网与清洁能源,2019,35(11):16.YANG Jianxin,WANG Yidong,LIU Dongying.Design and implementation of main transformer relay protection system and automatic fire extinguishing system for 330 kV substations[J].Power System and Clean Energy,2019,35(11):16.
    [8] 彭云豪,董希建,周海强,等.电网安全稳定控制系统可靠性评估[J].电力系统保护与控制,2020,48(13):123-131.PENG Yunhao,DONG Xijian,ZHOU Haiqiang,et al.Reliability evaluation of power grid security and stability control system[J].Power System Protection and Control,2020,48(13):123-131.
    [9] 徐长宝,文屹,龚庆武,等.基于云推理的线路保护装置故障率预测方法[J].电力科学与技术学报,2017,32(2):83-91.XU Changbao,WEN Yi,GONG Qingwu,et al.Cloud reasoning based method for predicting failure rate of transmission line protection equipment[J].Journal of Electric Power Science and Technology,2017,32(2):83-91.
    [10] 侯艾君.继电保护状态评价方法及其在检修决策中的应用[D].重庆:重庆大学,2012.
    [11] 徐长宝,赵立进,高吉普,等.基于灰色马尔科夫链的继电保护装置寿命研究[J].电力科学与技术学报,2019,34(3):114-119.XU Changbao,ZHAO Lijin,GAO Jipu,et al.Research of relay protection device life cycle based on gray Markov model[J].Journal of Electric Power Science and Technology,2019,34(3):114-119.
    [12] Q/GDW 11285—2014.继电保护状态评价导则[S].
    [13] 苏永春,陈忻磊,张沛超,等.基于HAZOP分析的数字化变电站故障树建立方法[J].电力系统保护与控制,2012,40(6):15.SU Yongchun,CHEN Xinlei,ZHANG Peichao,et al.A fault tree constructing method based on HAZOP analysis for digital substations[J].Power System Protection and Control,2012,40(6):15.
    [14] 张露江,张利,杨要伟,等.基于改进贝叶斯网络的风机齿轮箱自动诊断策略研究[J].电力系统保护与控制,2019,47(19):145-151.ZHANG Lujiang,ZHANG Li,YANG Yaowei,et al.Research on automatic diagnosis strategy of wind turbine gearbox based on improved Bayesian network[J].Power System Protection and Control,2019,47(19):145-151.
    [15] 王达梦,马志勇,柳亦兵,等.小故障样本条件下的风电机组分层贝叶斯可靠性模型[J].中国电力,2019,52(12):97-104.WANG Dameng,MA Zhiyong,LIU Yibing,et al.Hierarchical Bayesian reliability model for wind turbines with small fault sample sets[J].Electric Power,2019,52(12):97-104.
    [16] 翁月莹,陈翔宇,肖新华,等.基于PSO和贝叶斯分类器的配电网高阻接地故障识别技术[J].电测与仪表,2020,57(2):52-56.WENG Yueying,CHEN Xiangyu,XIAO Xinhua,et al.High impedance fault detection based on PSO and bayes classifier[J].Electrical Measurement & Instrumentation,2020,57(2):52-56.
    [17] 陈景文,褚恩亮,李英春,等.基于贝叶斯分类器的谐振接地故障选线系统设计[J].智慧电力,2019,47(8):99-104+119.CHEN Jingwen,CHU Enliang,LI Yingchun,et al.Design of resonant ground fault line selection system based on bayesian classifier[J].Smart Power,2019,47(8):99-104+119.
    [18] 李一泉,焦邵麟,曾耿晖,等.基于贝叶斯网络的电网复杂故障推演新方法[J].电力系统保护与控制,2020,48(4):57-63.LI Yiquan,JIAO Shaolin,ZENG Genghui,et al.A new method to deduce complex fault of power grid based on Bayesian network[J].Power System Protection and Control,2020,48(4):57-63.
    [19] 黄建华,杨思,吴波.基于贝叶斯网络的基坑围护工程施工风险评估[J].武汉大学学报(工学版),2016,49(5):733-739.HUANG Jianhua,YANG Si,WU Bo.Construction risk assessment of foundation pit engineering based on methods of Bayesian network[J].Engineering Journal of Wuhan University,2016,49(5):733-739.
    [20] 蔡嘉,江修波.基于贝叶斯算法的220 kV变压器故障检修成本模型分析[J].电力科学与技术学报,2013,28(4):15-18.CAI Jia,JIANG Xiubo.Bayesian econometrics method based maintenance cost model for 220 kV transformers[J].Journal of Electric Power Science and Technology,2013,28(4):15-18.
    [21] 吴晋媛,夏国强,李通,等.基于时域介电法和动态贝叶斯网络的变压器油纸绝缘老化状态评估[J].高压电器,2019,55(10):196-203.WU Jinyuan,XIA Guoqiang,LI Tong,et al.Evaluation of the aging state of transformer oilpaper insulation based on time domain dielectric method and dynamic Bayesian network[J].High Voltage Apparatus,2019,55(10):196-203.
    [22] 张友强,王洪斌,刁兴华,等.计及保护失效的智能变电站二次系统综合风险评估研究[J].电力系统保护与控制,2018,46(22):155-163.ZHANG Youqiang,WANG Hongbin,DIAO Xinghua,et al.Integrated risk assessment of intelligent substation secondary system considering the protection failure[J].Power System Protection and Control,2018,46(22):155-163.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王文焕,郭鹏,祝洁,等.基于故障树及贝叶斯网络的继电保护系统风险评估及故障定位方法[J].电力科学与技术学报,2021,36(4):81-90.
Wang Wenhuan, Guo Peng, Zhu Jie, et al. Fault positioning and risk assessment method of relay protection based on fault tree and Bayesian network[J]. Journal of Electric Power Science and Technology,2021,36(4):81-90.

复制
分享
文章指标
  • 点击次数:266
  • 下载次数: 1088
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-08-28
文章二维码