基于K-means聚类和同步挤压小波变换的次同步振荡检
作者:
作者单位:

作者简介:

通讯作者:

刘韶峰(1977-),男,硕士,高级工程师,主要从事电力系统稳定分析与控制研究;E-mail:liushaofeng_1@163.com

中图分类号:

TM763

基金项目:

国家电网有限公司总部科技项目(SGSH0000DKJS1800428)


Subsynchronous oscillation detection based on Kmeans clustering and frequency synchrosqueezing wavelet transforms
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电力系统次同步振荡具有非平稳、非线性特性,现有检测方法难以捕获振荡特征和变化趋势,为此提出 K- means结合SWT的振荡检测方法,并将该方法引入次同步振荡谐波检测分析中。首先,利用 SWT 较强的抗模态混叠能力和抗噪性,在噪声环境下清晰直观表征信号振荡模态。同时,在SWT中运用频域切片,提取电力信号中的多重振荡模态,进行重构和参数辨识。考虑到SWT将小波系数挤压至中心频率,采用 K-means聚类方法准确求出重构前振荡信号中心频率,并自动选择信号重构频域区间。最后,通过仿真算例验证该方法的有效性。

    Abstract:

    Power system has nonstationary and nonlinear characteristics of the subsynchronous oscillation (SSO), it is difficult for existing detection methods to capture the oscillation characteristics and the changing trend. In this paper, an oscillation detection approach, which combines Kmeans clustering and synchrosqueezed wavelet transform (SWT), is proposed to achieve the harmonic detection and analysis of subsynchronous oscillation. The antimodal aliasing ability and antinoise ability of the SWT are utilized to clearly and intuitively show the oscillation modes of the signals with noise. The frequency domain slicing is employed in the SWT to extract multiple oscillation modes for the reconstruction and the parameter identification. Considering that the SWT will squeeze the wavelet coefficients to the central frequency, the Kmeans clustering method is applied to calculate the central frequency of the oscillating signal. At the same time, the frequency interval of the signal can be automatically selected for reconstruction. Finally, the simulations are conducted to examine the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

刘韶峰,徐泰山,鲍颜红,等.基于K-means聚类和同步挤压小波变换的次同步振荡检[J].电力科学与技术学报,2021,36(4):132-140.
Liu Shaofeng, Xu Taishan, Bao Yanhong, et al. Subsynchronous oscillation detection based on Kmeans clustering and frequency synchrosqueezing wavelet transforms[J]. Journal of Electric Power Science and Technology,2021,36(4):132-140.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-28
  • 出版日期:
文章二维码