基于K-means聚类和同步挤压小波变换的次同步振荡检
CSTR:
作者:
通讯作者:

刘韶峰(1977-),男,硕士,高级工程师,主要从事电力系统稳定分析与控制研究;E-mail:liushaofeng_1@163.com

中图分类号:

TM763

基金项目:

国家电网有限公司总部科技项目(SGSH0000DKJS1800428)


Subsynchronous oscillation detection based on Kmeans clustering and frequency synchrosqueezing wavelet transforms
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    电力系统次同步振荡具有非平稳、非线性特性,现有检测方法难以捕获振荡特征和变化趋势,为此提出 K- means结合SWT的振荡检测方法,并将该方法引入次同步振荡谐波检测分析中。首先,利用 SWT 较强的抗模态混叠能力和抗噪性,在噪声环境下清晰直观表征信号振荡模态。同时,在SWT中运用频域切片,提取电力信号中的多重振荡模态,进行重构和参数辨识。考虑到SWT将小波系数挤压至中心频率,采用 K-means聚类方法准确求出重构前振荡信号中心频率,并自动选择信号重构频域区间。最后,通过仿真算例验证该方法的有效性。

    Abstract:

    Power system has nonstationary and nonlinear characteristics of the subsynchronous oscillation (SSO), it is difficult for existing detection methods to capture the oscillation characteristics and the changing trend. In this paper, an oscillation detection approach, which combines Kmeans clustering and synchrosqueezed wavelet transform (SWT), is proposed to achieve the harmonic detection and analysis of subsynchronous oscillation. The antimodal aliasing ability and antinoise ability of the SWT are utilized to clearly and intuitively show the oscillation modes of the signals with noise. The frequency domain slicing is employed in the SWT to extract multiple oscillation modes for the reconstruction and the parameter identification. Considering that the SWT will squeeze the wavelet coefficients to the central frequency, the Kmeans clustering method is applied to calculate the central frequency of the oscillating signal. At the same time, the frequency interval of the signal can be automatically selected for reconstruction. Finally, the simulations are conducted to examine the effectiveness of the proposed method.

    参考文献
    [1] 毕天姝,孔永乐,肖仕武,等.大规模风电外送中的次同步振荡问题[J].电力科学与技术学报,2012,27(1):10-15.BI Tianshu,KONG Yongle,XIAO Shiwu,et al.Review of subsynchronous oscillation with largescale wind power transmission[J].Journal of Electric Power Science and Technology,2012,27(1):10-15.
    [2] 张航,滕予非,王晓茹,等.计及并联补偿高抗的电力系统对次同步振荡的影响研究[J].电力系统保护与控制,2019,47(4):25-34.ZHANG Hang,TENG Yufei,WANG Xiaoru,et al.Analysis of subsynchronous oscillation of power system with shunt reactors[J].Power System Protection and Control,2019,47(4):25-34.
    [3] 叶逢春,张涛,张迪,等.基于数值等效建模的双馈风电场次同步振荡研究[J].电网与清洁能源,2019,35(4):17.YE Fengchun,ZHANG Tao,ZHANG Di,et al.Research on subsynchronous oscillation of dfigbased wind farm based on numerical equivalent modeling[J].Power System and Clean Energy,2019,35(4):17.
    [4] 袁明军,江浩,黎强,等.电力系统实时动态监测子站关键技术研究[J].电力科学与技术学报,2019,34(1):109-114.YUAN Mingjun,JIANG Hao,LI Qiang,et al.Study on key technology for realtime dynamic monitoring slave station of power system[J].Journal of Electric Power Science and Technology,2019,34(1):109-114.
    [5] 谢小荣,王银,刘华坤,等.电力系统次同步和超同步谐波相量的检测方法[J].电力系统自动化,2016,40(21):189-194.XIE Xiaorong,WANG Yin,LIU Huakun,et al.Detection method for subsynchronous and supersynchronous harmonic phasors in power system[J].Automation of Electric Power Systems,2016,40(21):189-194.
    [6] 张陵,李君芝,杨金成,等.风电汇集地区次同步振荡控制系统的研究[J].高压电器,2019,55(3):199207.ZHANG Ling,LI Junzhi,YANG Jincheng,et al.Research on subsynchronous oscillation control system for wind power integration areas[J].High Voltage Apparatus,2019,55(3):199-207.
    [7] 邱衍江,张新燕,张超,等.新能源汇集地区广域次同步振荡监测系统研究与构建[J].电力系统保护与控制,2019,47(1):88-94.QIU Yanjiang,ZHANG Xinyan,ZHANG Chao,et al.Research and construction of widearea subsynchronous oscillation monitoring system in new energy influx area[J].Power System Protection and Control,2019,47(1):88-94.
    [8] 张家军,张新燕,高亮,等.基于振荡分量时频特性的次同步振荡早期预警[J].电测与仪表,2020,57(19):2126.ZHANG Jiajun,ZHANG Xinyan,GAO Liang,et al.Early warning of subsynchronous oscillation based on timefrequency characteristics of oscillatory components[J].Electrical Measurement & Instrumentation,2020,57(19):21-26.
    [9] Wen H,Guo S,Teng Z,et al.Frequency estimation of distorted and noisy signals in power systems by FFTbased approach[J].IEEE Transactions on Power Systems,2014,29(2):765-774.
    [10] 杨京,王彤,唐俊刺.基于滑窗FFT的次同步振荡时变幅频在线监测方法[J].中国电力,2020,53(11):139-146.YANG Jing,WANG Tong,TANG Junci.Subsynchronous oscillation timevarying amplitude frequency online monitoring method based on sliding window FFT[J].Electric Power,2020,53(11):139-146.
    [11] 赵妍,李武璟,聂永辉.次同步振荡的频率切片小波变换检测方法[J].电工技术学报,2017,32(6):106-114.ZHAO Yan,LI Wujing,NIE Yonghui.A method for subsynchronous oscillation detection using frequency slice wavelet transform[J].Transactions of China Electrotechnical Society,2017,32(6):106-114.
    [12] 喻敏,王斌,陈绪轩,等.同步挤压小波变换在电力系统低频振荡模态参数提取中的应用[J].电工技术学报,2017,32(6):14-20.YU Min,WANG Bin,CHEN Xuxuan,et al.Application of synchrosqueezed wavelet transform for extraction of the oscillatory parameters of low frequency oscillation in power systems[J].Transactions of China Electrotechnical Society,2017,32(6):14-20.
    [13] 高静,李鹏,徐绍军,等.基于小波变换和HHT的光伏并网谐振检测方法[J].电力科学与技术学报,2017,32(4):31-37.GAO Jing,LI Peng,XU Shaojun,et al.Detection method of PV resonance based on wavelet transform and HHT[J].Journal of Electric Power Science and Technology,2017,32(4):31-37.
    [14] Huang N E,Shen Z,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear nonstationary time series analysis[J].Proceedings of the Royal Society of London,1998,454:903-995.
    [15] Daubechies I,Lu J,Wu H T.Synchrosqueezed wavelet transforms:an empirical mode decompositionlike tool[J].Applied and Computational Harmonic Analysis,2011,30(2):243-261.
    [16] 童涛,张新燕,刘博文,等.基于傅里叶同步挤压变换和希尔伯特变换的谐波间谐波检测分析[J].电网技术,2019,43(11):4200-4208.TONG Tao,ZHANG Xinyan,LIU Bowen,et al.Analysis of harmonic and interharmonic detection based onFourierbased synchrosqueezing transform and Hilbert transform[J].Power System Technology,2019,43(11):4200-4208.
    [17] 赵妍,崔浩瀚,荣子超.次同步振荡在线监测的同步提取变换和朴素贝叶斯方法[J].电力系统自动化,2019,43(3):187-193.ZHAO Yan,CUI Haohan,RONG Zichao.Online monitoring of subsynchronous oscillation based on synchroextracting transform and Naive Bayes Method[J].Automation of Electric Power,2019,43(3):187-193.
    [18] Zhao Y,Cui H H,Huo H,et al.Application of synchrosqueezed wavelet transforms for extraction of the oscillatory parameters of subsynchronous oscillation in power systems[J].Energies,2018,11(6):15-25.
    [19] 张然,孙晓璐,何仲潇,等.基于异常点检测和改进Kmeans算法的台区用户相别辨识方法[J].智慧电力,2020,48(1):9196.ZHANG Ran,SUN Xiaolu,HE Zhongxiao,et al.Phase identification method for distribution area users based on outlier detection and improved Kmeans algorithm[J].Smart Power,2020,48(1):91-96.
    [20] 孙毅,冯云,崔灿,等.基于动态自适应K均值聚类的电力用户负荷编码与行为分析[J].电力科学与技术学报,2017,32(3):38.SUN Yi,FENG Yun,CUI Can,et al.Power user load code and behavior analysis based on dynamic adaptive Kmeans clustering[J].Journal of Electric Power Science and Technology,2017,32(3):38.
    [21] Marco Capó,Aritz Pérez,Lozano J A.An efficient approximation to the Kmeans clustering for massive data[J].KnowledgeBased Systems,2017,117:56-69.
    [22] None.First benchmark model for computer simulation of subsynchronous resonance[J].IEEE Transactions on Power Apparatus and Systems,1977,96(5):1565-1572.
    相似文献
    引证文献
引用本文

刘韶峰,徐泰山,鲍颜红,等.基于K-means聚类和同步挤压小波变换的次同步振荡检[J].电力科学与技术学报,2021,36(4):132-140.
Liu Shaofeng, Xu Taishan, Bao Yanhong, et al. Subsynchronous oscillation detection based on Kmeans clustering and frequency synchrosqueezing wavelet transforms[J]. Journal of Electric Power Science and Technology,2021,36(4):132-140.

复制
分享
文章指标
  • 点击次数:200
  • 下载次数: 864
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-08-28
文章二维码