基于复合神经网络的GIS局放故障类型识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM863

基金项目:

国网新疆电力有限公司科技项目(SGXJWL00YJJS1901002)


Partial discharge fault type identification of GIS based on composite neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    气体绝缘金属封闭开关设备(GIS)局部放电故障类型识别是故障预警和制定检修计划的重要基础,对维护电力设备的安全稳定运行意义重大。在此背景下,首先分析常见的几种 GIS故障类型;然后,在超高频传感器采集到的图谱信号处理和分类上,由于卷积神经网络(CNN)和深度置信网络 (DBN)融合而成的复合神经网络模型可以快速实现有效特征信号的提取和故障类型准确分类,因此该文融合 CNN 和 DBN,建立复合神经网络的主体结构,并利用该网络进行 GIS局部放电故障类型识别;最后进行实验验证。结果表明该复合神经网络模型识别故障的准确性最高可达99%。

    Abstract:

    Gas insulated switchgear (GIS) partial discharge fault type identification is an important basis for fault warning and maintenance planning, and is of great significance for maintaining the safe and stable operation of power equipment. This paper firstly analyzes several common types of GIS faults. Then, in the processing and classification of the spectral envelop signal collected by the UHF sensor, the composite neural network model formed by the fusion of the convolutional neural network (CNN) and the deep belief network (DBN) can quickly realize the extraction of effective feature signals and accurate classification of fault types. Therefore this paper integrates CNN and DBN, establishes the main structure of the composite neural network, and uses this network to identify GIS partial discharge fault types. Finally, the method is verified in simulation experiments. Results show that the accuracy of the composite neural network model to identify faults can reach up to 99%.

    参考文献
    相似文献
    引证文献
引用本文

袁文海,刘彪,徐浩,等.基于复合神经网络的GIS局放故障类型识别[J].电力科学与技术学报,2021,36(4):157-164.
Yuan Wenhai, Liu Biao, Xu Hao, et al. Partial discharge fault type identification of GIS based on composite neural network[J]. Journal of Electric Power Science and Technology,2021,36(4):157-164.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-28
  • 出版日期:
文章二维码