基于特征优选和加权聚类的商场用电模式分析
CSTR:
作者:
通讯作者:

张美霞(1979-),女,硕士,副教授,主要从事电力系统运行及需求侧管理研究;E-mail:zhangmeixia@shiep.edu.cn

中图分类号:

TM73

基金项目:

上海市科委地方能力建设计划基金(16020500900);国家电网公司科技项目(52090016002M)


Analysis of power consumption mode for shopping malls based on feature selection and weighted clustering
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | | | |
  • 文章评论
    摘要:

    随着用电信息的采集完善,准确的用户用电模式分析将为电力智能化建设提供重要依据,在此背景下,针对用电模式分析中考虑聚类特征类型单一的问题,提出一种考虑多类型特征优选的加权聚类分析方法。首先,将负荷类特征和气象类特征归一化建立待选择特征集合;然后,结合互信息和灰色关联度优选出聚类特征集;最后,采用权重分配的k-means方法对优选特征集合进行聚类,结合负荷曲线分析各用电模式的典型用电行为。通过对上海市某商场用电负荷数据的分析,证明该方法能够减少数据冗余信息的干扰并提升聚类质量。

    Abstract:

    With the eventually improvement of power consumption information collection, the accurate analysis for user power consumption mode will provide an important basis for power intelligent construction. When analyzing power consumption modes, the load is the only clustering feature to be taken into account. Therefore, a weighted clustering analysis method considering multi-type feature selection is proposed. Firstly, the load and meteorological features are normalized to establish a feature set to be selected. Then, the clustering feature set is selected by combining mutual information and grey correlation degree. Finally, the weighted k-means algorithm is utilized to cluster the selected feature sets, and the typical behavior of each power consumption mode is analyzed with the load curve. Through the analysis of the electrical load data of a shopping mall in Shanghai, it is proved that this method can reduce the interference of redundancy information and improve the clustering quality.

    参考文献
    [1] 胡江溢,祝恩国,杜新纲,等.用电信息采集系统应用现状及发展趋势[J].电力系统自动化,2014(2):131-135.HU Jiangyi,ZHU Enguo,DU Xingang,et al.Application status and development trend of electric power information acquisition system[J].Automation of electric power system,2014(2):131-135.
    [2] 刘思贤,康军胜,刘素芳.基于用电信息采集系统的高压电能表失压故障监测和损失评估[J].供用电,2019,36(8):49-53.LIU Sixian,KANG Junsheng,LIU Sufang.Loss-of-voltage fault monitoring and loss assessment of high-voltage energy meter based on electricity information acquisition system[J].Distibution & Utilization,2019,36(8):49-53.
    [3] 纪永新,王承民,张玉林,等.智能配电网一二次协同规划方法研究[J].智慧电力,2020,48(1):69-73.JI Yongxin,WANG Chengmin,ZHANG Yulin,et al.Primary and secondary collaborative planning method for smart distribution network[J].Smart Power,2020,48(1):69-73.
    [4] 邬晓韬.基于大数据技术的电网能源智能调配应用研究[J].电网与清洁能源,2019,35(10):23-27.WU Xiaotao.Research on the application of the intelligent allocation of grid energy based on big data technology[J].Power System and Clean Energy,2019,35(10):23-27.
    [5] 徐磊,杨秀,张美霞.基于数据挖掘的工业用户用电行为分析[J].电测与仪表,2017,54(16):68-74.XU Lei,YANG Xiu,ZHANG Meixia.Industrial users of electricity behavior analysis based on data mining[J].E-lectrical Measurement & Instrumentation,2017,54(16):68-74.
    [6] 王星华,陈卓优,彭显刚.一种基于双层聚类分析的负荷形态组合识别方法[J].电网技术,2016,40(5):1495-1501.WANG Xinghua,CHEN Zhuoyou,PENG Xiangang.A-new combinational electrical load analysis method based on bilayer clustering analysis[J].Power System Technology,2016,40(5):1495-1501.
    [7] Cheng F,Fu X,Yang Z.A short-term building cooling load prediction method using deep learning algorithms[J].Applied Energy,2017,195:222-233.
    [8] 傅军栋,杨姚,罗善江.智能小区居民用电负荷特征权重分析[J].电力系统保护与控制,2016,44(18):41-45.FU Jundong,YANG Yao,LUO Shanjiang.Residential electricity load features weighting analysis in smart community[J].Power System Protection and Control,2016,44(18):41-45.
    [9] 陆俊,朱炎平,彭文昊,等.智能用电用户行为分析特征优选策略[J].电力系统自动化,2017,41(5):58-63.LU Jun,ZHU Yanping,PENG Wenhao,et al.Feature selection strategy for electricity consumption behavior analysis in smart grid[J].Automation of Electric Power Systems,2017,41(5):58-63.
    [10] 孙毅,冯云,崔灿,等.基于动态自适应K均值聚类的电力用户负荷编码与行为分析[J].电力科学与技术学报,2017,32(3):3-8.SUN Yi,FENG Yun,CUI Can,et al.Power user load code and behavior analysis based on dynamic adaptive k-means clustering[J].Journal of Electric Power Science and Technology,2017,32(3):3-8.
    [11] 刘庆时,赵贺,刘迪,等.基于支持向量机的家庭负荷控制策略研究[J].电力科学与技术学报,2016,31(4):96-101.LIU Qingshi,ZHAO He,LIU Di,et al.Research on family load control strategy based on support vector machine[J].Journal of Electric Power Science and Technology,2016,31(4):96-101.
    [12] 张志,杜延菱,崔慧军,等.考虑关联因素的智能化中长期电力负荷预测方法[J].电力系统保护与控制,2019,47(2):24-30.ZHANG Zhi,DU Yanling,CUI Huijun,et al.Intelligent mid-long electricity load forecast method considering associated factors[J].Power System Protection and Control,2019,47(2):24-30.
    [13] 谢真桢,杨秀,张鹏,等.基于信息论与混合聚类分析的短期负荷预测方法研究[J].电测与仪表,2017,54(19):67-72.XIE Zhenzhen,YANG Xiu,ZHANG Peng,et al.Study on short-term load forecasting method based on information theory and mixed cluster analysis[J].Electrical Measurement & Instrumentation,2017,54(19):67-72.
    [14] 高亚静,孙永健,杨文海,等.基于新型人体舒适度的气象敏感负荷短期预测研究[J].中国电机工程学报,2017,37(7):1946-1954.GAO Yajing,SUN Yongjian,YANG Wenhai,et al.Weather-sensitive load’s short-term forecasting research based on new human body amenity indicator[J].Proceedings of the CSEE,2017,37(7):1946-1954.
    [15] 张斌,庄池杰,胡军,等.结合降维技术的电力负荷曲线集成聚类算法[J].中国电机工程学报,2015,35(15):3741-3749.ZHANG Bin,ZHUANG Chijie,HU Jun,et al.Ensembleclustering algorithm combined with dimension reduction techniques for power load profiles[J].Proceedings of the CSEE,2015,35(15):3741-3749.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张美霞,李泰杰,杨秀,等.基于特征优选和加权聚类的商场用电模式分析[J].电力科学与技术学报,2021,36(5):137-143.
Zhang Meixia, Li Taijie, Yang Xiu, et al. Analysis of power consumption mode for shopping malls based on feature selection and weighted clustering[J]. Journal of Electric Power Science and Technology,2021,36(5):137-143.

复制
分享
文章指标
  • 点击次数:235
  • 下载次数: 770
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-11-16
文章二维码