一种新K-means聚类算法的多元线性回归台区线损率预测模型
CSTR:
作者:
通讯作者:

张裕(1983-),男,硕士,高级工程师,主要从事电力系统新技术应用、电网规划设计研究;E-mail:1257791656@qq.com

中图分类号:

TM74

基金项目:

贵州电网有限责任公司科技项目(GZKJXM20172673);国家自然科学基金(51207086)


Prediction model of line loss rate in the station area based on the multivariate linear regression integrated with a new K-means clustering algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    线损率是反映线损管理的重要依据,由于其理论计算的复杂性,一直倍受电力工作者的广泛关注。基于国内外线损管理研究现状以及相关理论计算方法,提出一种基于 K-means聚类算法的多元线性回归模型预测台区线损率方法。首先,利用 K-means聚类算法对台区样本数据聚类分析,根据聚类结果建立线性回归预测模型计算台区线损率。然后,通过预测线损率与实际线损率比较分析,对线损估计误差较大的台区重点关注。最后,以贵州部分地区的台区样本数据为依据,验证所提方法的准确性与快速性,为贵州地区的线损管理提供理论依据。

    Abstract:

    The line loss rate is an important basis to reflect line loss management. Due to the complexity of its theoretical calculation, it has been widely concerned by power workers. Based on the current research status of line loss management at home and abroad and related theoretical calculation methods, a multiple linear regression model based on the K-Means clustering algorithm is proposed to predict the line loss rate of the station area. Firstly, the proposed K-Means clustering algorithm is utilized to cluster and analyze the sample data of the station area. Linear regression prediction models are established to calculate the line loss rate of the station area according to the clustering results. Then, through the comparison and analysis of the predicted line loss rate and the actual line loss rate, much attention is paid on the stations with large errors in line loss estimation. Finally, Finally, based on the sample data of some regions in Guizhou, the accuracy and rapidity of the proposed method are verified, which provides a theoretical basis for line loss management in Guizhou.

    参考文献
    [1] 袁晓燕,陶钰磊,何飞宇.基于模糊聚类的配电网极限线损率计算方法[J].供用电,2019,36(11):71-77.YUAN Xiaoyan,TAO Yulei,HE Feiyu.Method for estimating limit line loss rate of distribution network based on FCM[J].Distribution& Utilization,2019,36(11):71-77.
    [2] 魏梅芳,胡毕正,庞文龙,等.基于动态三相不平衡度的配电网线损计算方法研究[J].智慧电力,2020,48(2):104-108.WEI Meifang,HU Bizheng,PANG Wenlong,et al.Calculation method of distribution line loss based on dynamic three-phase unbalance degree[J].Smart Power,2020,48(2):104-108.
    [3] 郑志宇,李石东,凌毓畅,等.中低压直流配电网线损计算与分析[J].电测与仪表,2019,56(3):23-28.ZHENG Zhiyu,LI Shidong,LING Yuchang,et al.Calculation and analysis of line loss of medium-low voltage DC distribution network[J].Electrical Measurement & Instrumentation,2019,56(3):23-28.
    [4] 陈建华,皇甫成,梁吉,等.一种基于实际数据驱动的新能源出力对电网线损影响评估方法[J].电网与清洁能源,2020,36(8):60-66.CHEN Jianhua,HUANGFU Cheng,LIANG Ji,et al.Analysis of the influence of renewable energy generation on power grid line loss based on actual data[J].Power System and Clean Energy,2020,36(8):60-66.
    [5] 陈得治,郭志忠.基于负荷获取和匹配潮流方法的配电网理论线损计算[J].电网技术,2005,29(1):80-84.CHEN Dezhi,GUO Zhizhong.Distribution system theoretical line loss calculation based on load obtaining and matching power flow[J].Power System Technology,2005,29(1):80-84.
    [6] 谢荣斌,杜帆,程湘,等.三相不平衡及谐波对三相四线低压配电网线损的影响[J].电力系统保护与控制,2020,48(21):22-30.XIE Rongbin,DU Fan,CHENG Xiang,et al.Influence of three-phase imbalance and harmonic on line loss of three-phase four-wire low-voltage distribution network[J].Power System Protection and Control,2020,48(21):22-30.
    [7] 李晨,丁晓群,刘小波.基于实时系统数据的电网综合线损分析方法及其应用[J].电力自动化设备,2005,25(3):47-50.LI Chen,DING Xiaoqun,LIU Xiaobo.Application of evolutionary algorithm based fuzzy robust theory in transmission line fault locating[J].Electric Power Automation Equipment,2005,25(3):47-50.
    [8] 李战鹰,任震,陈永进.直流输电系统网损研究[J].电力自动化设备,2007,27(1):9-12.LI Zhanying,REN Zhen,CHEN Yongjin.Loss study of HVDC system[J].Electric Power Automation Equipment,2007,27(1):9-12.
    [9] 刘庭磊,王韶,张知.采用负荷电量计算低压配电台区理论线损的牛拉法[J].电力系统保护与控制,2015,43(19):143-148.LIU Tinglei,WANG Shao,ZHANG Zhi.Niula method for calculating theoretical line losses in low voltagedistribution transformer district by using loadcapacity[J].Power System Protection and Control,2015,43(19):143-148.
    [10] 李昉,罗汉武.基于多元线性回归理论的河南省用电量预测[J].电网技术,2008,32(1):74-79.LI Fang,LUO Hanwu.Power consumption prediction in Henan Province based on multiple linear regression theory[J].Power System Technology,2008,32(1):74-79.
    [11] 蒋峰,王宗耀,张鹏.基于灰色-加权马尔可夫链的光伏发电量预测[J].电力系统保护与控制,2019,47(15):55-60.JIANG Feng,WANG Zongyao,ZHANG Peng.Forecasting power generation of solar photovoltaic system based on the combination of grey model and weighted Markov chain[J].Power System Protection and Control,2019,47(15):55-60.
    [12] 张鹏,王昆,于涛,等.基于多元线性回归分析法的煤层气含量预测[J].煤炭技术,2016,35(11):52-58.ZHANG Peng,WANG Kun,YU Tao,et al.Content predicting of CBM based on multiple linear regression analysis method[J],Coal Technology,2016,35(11):52-58.
    [13] 王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.
    [14] 陈照,王尧,牛峰,等.基于神经网络和D-S证据理论的故障电弧检测[J].高压电器,2019,55(3):29-36.CHEN Zhao,WANG Yao,NIU Feng,et al.Fault arc detection based on neural network and D-S evidence theory[J].High Voltage Apparatus,2019,55(3):29-36.
    [15] 杨明花,张克涵.基于高光谱图像和卷积神经网络的燃煤热值估计算法[J].中国电力,2019,52(9):148-153.YANG Minghua,ZHANG Kehan.Coal calorific value estimation algorithm based on hyperspectral image and convolutional neural network[J].Electric Power,2019,52(9):148-153.
    [16] 刘闯,金仁瀚,巩二磊,等.多元线性回归方法预测燃气轮机发电机组性能[J].中国电机工程学报,2017,37(16):4731-4738+4898.LIU Chuang,JIN Renhan,GONG Erlei,et al.Multivariate linear regression method for predicting the performance of gas turbine generator[J].Proceeding of the CSEE,2017,37(16):4731-4738+4898.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张裕,徐依明,张彦,等.一种新K-means聚类算法的多元线性回归台区线损率预测模型[J].电力科学与技术学报,2021,36(5):179-186.
Zhang Yu, Xu Yiming, Zhang Yan, et al. Prediction model of line loss rate in the station area based on the multivariate linear regression integrated with a new K-means clustering algorithm[J]. Journal of Electric Power Science and Technology,2021,36(5):179-186.

复制
分享
文章指标
  • 点击次数:336
  • 下载次数: 1434
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2021-11-16
文章二维码