基于PSO-ABFO的负荷频率控制系统控制器设计与优化
CSTR:
作者:
中图分类号:

TM621.6

基金项目:

上海市“科技创新行动计划”高新技术领域项目(16111106300;17511109400);上海市科学技术委员会工程技术研究中心资助 (14DZ2251100)


Design and optimization of load frequency control system controller based on PSOABFO
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    负荷频率控制对于保障电网本身安全可靠运行有重要作用,适宜的控制器整定参数使得电网在各种随机扰动下能维持系统频率稳定和长期安全运行。针对单区域两机组电网的负荷频率控制器参优化整定问题,提出一种基于粒子群改进自适应细菌觅食优化算法(PSO-ABFO)的控制器参数整定设计方法。PSO-ABFO 在标准细菌觅食算法的基础上,结合粒子群(PSO)算法思想引入全局最优、个体最优以及自适应步长,重新定义细菌的健康度并修改细菌迁移的方式,提高算法的寻优速度和寻优精度。最后,建立负荷频率控制系统(LFC)模型进行仿真试验,验证所提控制器设计与优化方法使系统动态性能显著提升。

    Abstract:

    The load frequency control plays an important role in ensuring the security and reliable operation of the power grid. The appropriate controller parameter setting ensures frequency stability and longterm security of power systems under various random disturbances. To achieve the optimal setting of load frequency controller of a singlearea twogenerator power grid, this paper proposes a controller parameter tuning method based on particle swarm optimization adaptive bacterial foraging optimization (PSOABFO), which is based on the standard BFO and combines the idea of PSO to introduce global optimization, individual optimization and adaptive step size, etc. The speed and accuracy of the proposed algorithm is significantly improved. A load frequency control system (LFC) model is established to test the performance of the proposed algorithm. The results verifies that the improvement of the dynamic performance of the system.

    参考文献
    [1] 张磊,罗毅,肖雅元,等.大规模风电并网条件下AGC机组跨区分布式最优协调控制[J].电工技术学报,2016,31(9):42-49.ZHANHG Lei,LUO Yi,XIAO Yayuan,et al.Transregional and distributed optimal coordination control of AGC units under largescale wind power grid[J].Transactions of China Electrotechnical Society,2016,31(9):42-49.
    [2] 舒凡娣,谢嘉晟,廖晓娇,等.结合粒子群算法和穷举法的配电网故障诊断方法[J].智慧电力,2019,47(1):94-99.SHU Fandi,XIE Jiasheng,LIAO Xiaojiao,et al.Distribution network fault diagnosis method combining particle swarm optimization and exhaustive method[J].Smart Power,2019,47(1):94-99.
    [3] 王博,马莉,王国东.基于改进PSOGSA算法的快速开关型电网故障限流器优化配置[J].高压电器,2020,56(6):189-196.WANG Bo,MA Li,WANG Guodong.Optimal configuration of fast switching grid fault current limiter based on improved PSOGSA[J].High Voltage Apparatus,2020,56(6):189-196.
    [4] 左剑,王子琪,李银红,等.计及时滞的互联电网负荷频率控制最优分数阶PID控制器设计[J].控制理论与应用,2017,34(9):1151-1160.ZUO Jian,WANG Ziqi,LI Yinhong,et al.Optimal fractionalorder PID controller design for interconnected power grid load frequency control considering timedelay[J].Control Theory & Applications,2017,34(9):1151-1160.
    [5] Ibraheem A,Kumar P,Kothari D P.Recent philosophies of automatic generation control strategies in power systems[J].IEEE Transactions on Power Systems,2005,20(1):346-357.
    [6] Pandey S K,Mohanty S R,Kishor N.A literature survey on load–frequency control for conventional and distribution generation power systems[J].Renewable and Sustainable Energy Reviews,2013,25(5):318-334.
    [7] Chatterjee A N,Munshi S.An adaptive bacterial foraging algorithm for fuzzy entropy based image egmentation[J].Expert Systems with Applications,2011,38(12):15489-15498.
    [8] 胡林静,刘凯,杨明文.基于粒子群遗传算法的光伏MPPT控制研究[J].电测与仪表,2019,56(14):23-27.HU Linjing,LIU Kai,YANG Mingwen,et al.Research on PV MPPT control based on particle swarm genetic algorithm[J].Electrical Measurement & Instrumentation,2019,56(14)23-27.
    [9] 宋娟,李萍.基于免疫果蝇优化算法的PID控制参数优化[J].控制工程,2017,24(12):2502-2507.SONG Juan,LI Ping.Optimization of PID control parameters based on immune fly optimization algorithm[J].Control Engineering of China,2017,24(12):2502-2507.
    [10] 吕磊,章国宝,黄永明.基于蝙蝠算法的PID参数整定[J].控制工程,2017,24(3):548-553.LV Lei,ZHANG Guobao,HUANG Yongming.PID parameter tuning based on bat algorithm[J].Control Engineering of China,2017,24(3):548-553.
    [11] Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine,2002,22(3):52-67.
    [12] Dasgupta S,Das S,Abraham A,et al.Adaptive computational chemotaxis in bacterial foraging optimization:an analysis[J].IEEE Transactions on Evolutionary Computation,2009,13(4):919-941.
    [13] 杨蕾,李胜男,黄伟,等.永磁同步发电机自适应分数阶PID控制设计[J].电力系统保护与控制,2020,48(9):49-58.YANG Lei,LI Shengnan,HUANG Wei,et al.Adaptive fractionalorder PID control design of permanent magnetic synchronous generator[J].Power System Protection and Control,2020,48(9):49-58.
    [14] Das S,Dasgupta S,Biswas A,et al.On stability of the chemotactic dynamics in bacterial foraging optimization algorithm[J].IEEE Transactions on Systems,Man,and CyberneticsPart A:systems and humans,2009,39(3):670-679.
    [15] 郝思鹏,吴清,李佳伟,等.基于人工蜂群算法优化RBF神经网络光伏组件故障诊断定位方法[J].供用电,2019,36(10):87-92.HAO Sipeng,WU Qing,LI Jiawei,et al.Optimizing RBF neural network fault diagnosis and location method for PV module based on ABC algorithm[J].Distribution & Utilization,2019,36(10):87-92.
    [16] 于国强,崔晓波,史毅越,等.基于改进群优化算法的深度调峰机组一次调频建模[J].中国电力,2020,53(6):147-152.YU Guoqiang,CUI Xiaobo,SHI Yiyue,et al.Primary frequency regulation modeling of deep peak regulation unit based on improved group optimization algorithm[J].Electric Power,2020,53(6):147-152.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田园园,金国强,彭道刚,等.基于PSO-ABFO的负荷频率控制系统控制器设计与优化[J].电力科学与技术学报,2021,36(6):120-127.
TIAN Yuanyuan, JIN Guoqiang, PENG Daogang, et al. Design and optimization of load frequency control system controller based on PSOABFO[J]. Journal of Electric Power Science and Technology,2021,36(6):120-127.

复制
分享
文章指标
  • 点击次数:182
  • 下载次数: 1446
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-01-05
文章二维码