基于改进FCM聚类的窃电行为检测
作者:
作者单位:

作者简介:

通讯作者:

武超飞(1989-),男,硕士,主要从事电力大数据、电能计量技术研究;E-mail:707683266@qq.com

中图分类号:

TM715

基金项目:

国网公司总部科技项目(5400-201925177A-0-0-00)


Detection of stealing electricity energy based on improved fuzzy Cmeans clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    窃电行为检测的主要目的在于发现窃电用户,降低电力系统运营成本。在此背景下,提出基于改进模糊 C 均值聚类的窃电行为检测模型,包括因子分析、基于改进模糊 C均值聚类的局部离群因子计算、ROC曲线模型评价与调参及最佳检测阈值选取等模块,适用于无大量已知窃电用户样本的情况。首先,通过因子分析对用户用电特征 (包括用电负荷数据和电能表异常事件)进行维度规约,提升模型检测效率。再利用遗传模拟退火算法对模糊 C均值聚类算法进行改进,对用户用电特征进行检测。最后与现有成熟算法进行比较,验证该模型对窃电行为具有较高的检测准确度。检测模型可输出所有被测用户用电行为离群度得分和窃电概率排序,利用该文检测模型的输出,能够以较高精度检测出窃电行为用户,根据结果进行现场稽查,可提升反窃电工作效率。

    Abstract:

    Power stealing detection can find power stealing users efficiently and then reduce the operation cost of the power system. In this paper, a detection model of power stealing behavior based on improved fuzzy cmeans clustering is proposed, which is suitable for the situation without many known power stealing user samples. The model includes factor analysis, local outlier calculation based on improved fuzzy cmeans clustering, model evaluation and parameter adjustment with ROC curve, and the selection of the best detection threshold. Firstly, through factor analysis, the dimension specification of the user's power consumption characteristics (including power load data and abnormal events of electric energy meter) is carried out to improve the efficiency of model detection. Then, the FCM clustering algorithm integrated with a genetic simulated annealing algorithm is applied to detect the user's power consumption characteristics. Finally, compared with the existing mature algorithm, the result indicates that the model has a high detection accuracy for electricity theft. The detection model can output the power consumption behavior outlier and all the tested users' power stealing probability order. The output of the detection model can detect the power stealing users with high precision. The results can be employed into the field inspection, and the efficiency of antistealing work will be improved.

    参考文献
    相似文献
    引证文献
引用本文

武超飞,孙冲,刘厦,等.基于改进FCM聚类的窃电行为检测[J].电力科学与技术学报,2021,36(6):164-170.
WU Chaofei, SUN Chong, LIU Sha, et al. Detection of stealing electricity energy based on improved fuzzy Cmeans clustering[J]. Journal of Electric Power Science and Technology,2021,36(6):164-170.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-05
  • 出版日期:
文章二维码