基于高斯过程回归与不确定性耦合关系的电力系统规划典型场景提取技术
作者:
作者单位:

作者简介:

通讯作者:

李峰(1972-),男,本科,高级工程师,主要从事电力系统自动化、电网规划研究;E-mail:wh_lifeng@163.com

中图分类号:

TM73

基金项目:

国家电网山东省电力公司科技项目(52061318006P)


Extraction of typical scenarios for power system planning based on Gaussian process regression and uncertainty coupling relationship
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对典型场景生成方法存在未能全面考虑风、光、负荷等不确定因素间的耦合关系、传统聚类方法在高维数据集上表现较差、提取的典型场景不能很好体现原数据特征等问题。首先在改进核函数的基础上,结合贝叶斯公式和多元高斯分布,利用高斯过程回归(GPR)对电力系统中的多种不确定因素的耦合关系进行建模,生成模拟运行数据;其次,采用时序分段典型场景提取方法,划分总调度区间为若干子区间并分别进行中心点聚类,得出子区间带权典型场景并用笛卡尔积连接生成全调度区间典型场景集;然后,应用基于陆地移动距离(EMD)的方法,进行典型场景提取效果评价;最后,通过算例验证了提取的典型场景能更好保留原始基础场景集合的概率分布特性,充分体现原始数据集合中不确定因素之间的耦合关系。结果说明所述方法提取的典型场景能更好体现原数据特征。

    Abstract:

    The typical scene generation method has problems such as failing to fully consider the coupling relationship between uncertain factorslike wind, light and load, traditional clustering methods perform poorly on high-dimensional data sets, and the extracted typical scenes cannot well reflect the characteristics of the original data. To solve these problems,combining with Bayesian formula and multivariate Gaussian distribution, this paperfirstly uses Gaussian process regression (GPR) to model the coupling relationship of various uncertain factors in the power systemand generate the simulation operation data on the basis of improving the kernel function. Secondly,using the time series segmented typical scene extraction method, the total scheduling interval is divided into several sub-intervals. The center points are clustered respectively. Sub-interval weighted typical scenes are obtained and connected by Cartesian productto generate typical scene set of the full scheduling interval. Then, a method based on land movement distance (EMD) is applied to evaluate the extraction effect of typical scenes.Finally, it is verified that the extracted typical scenes can better retain the probability distribution characteristics of the original basic scene setand fully reflect the coupling relationship between uncertain factors in the original data set. The resultsshow that the typical scenes extracted by the method can be better reflect the characteristics of the original data.

    参考文献
    相似文献
    引证文献
引用本文

李峰,高效海,郑鹏飞,等.基于高斯过程回归与不确定性耦合关系的电力系统规划典型场景提取技术[J].电力科学与技术学报,2022,37(1):64-73.
LI Feng, GAO Xiaohai, ZHENG Pengfei, et al. Extraction of typical scenarios for power system planning based on Gaussian process regression and uncertainty coupling relationship[J]. Journal of Electric Power Science and Technology,2022,37(1):64-73.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-01
  • 出版日期:
文章二维码