基于改进K-means算法的电力短期负荷预测方法研究
CSTR:
作者:
通讯作者:

荀超(1984-)女,硕士,高级工程师,主要从事电力负荷预测分析研究;E-mail:tdksks@163.com

中图分类号:

TM715

基金项目:

国家自然科学基金(51177107);国家电网有限公司科技项目(52022319003P)


Research on short-term power load forecasting method based on improved K-means algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    现有方法预测电力短期负荷时忽略了对其进行聚类优化处理,导致预测耗时较长,短期负荷预测精度偏低。为此,提出一种基于改进K-means算法的电力短期负荷预测方法。该方法利用改进后的K-means算法聚类处理电力负荷大数据,使用聚类后获得的训练样本构建循环神经网络RNN拓扑结构,然后通过对RNN神经网络模型设置最优权值,实现电力负荷的短期预测。实验结果表明,所提方法具有高预测效率和高短期负荷预测精准度。

    Abstract:

    The existing methods ignore the clustering optimization process when predicting the short-term load of electricity, which leads to a long prediction time and a low accuracy of short-term load prediction. Therefore, a short-term load forecasting method based on improved K-means algorithm is proposed. This method uses the improved K-means algorithm to cluster the big data of power load, uses the training samples obtained after clustering to construct the RNN topology structure of the recurrent neural network. Then the optimal weights are set for the RNN neural network model to realize short-term forecast of the power load. The experimental results show that the proposed method has high forecasting efficiency and high short-term load forecasting accuracy.

    参考文献
    [1] 程津,黎燕,夏向阳,等.基于双组合预测的经济—电力负荷预测模型[J].电力科学与技术学报,2018,33(3):18-22.CHENG Jin,LI Yan,XIA Xiangyang,et al.Economic-electricity conduction prediction model based on dual combination prediction[J].Journal of Electric Power Science and Technology,2018,33(3):18-22.
    [2] 刘南艳,贺敏,赵建文.基于大数据平台的电力负荷预测[J].现代电子技术,2018,41(20):161-164.LIU Nanyan,HE Min,ZHAO Jianwen.Electric load forecasting based on big data platform[J].Modern Electronic Technology,2018,41(20):161-164.
    [3] 刘琪琛,雷景生,郝珈玮,等.基于Spark平台和并行随机森林回归算法的短期电力负荷预测[J].电力建设,2017,38(10):84-92.LIU Qichen,LEI Jingsheng,HAO Jiawei,et al.Short-term power load forecasting based on Spark platform and parallel random forest regression algorithm[J].Electric Power Construction,2017,38(10):84-92.
    [4] 徐晴,周超,赵双双,等.基于机器学习的短期电力负荷预测方法研究[J].电测与仪表,2019,56(23):70-75.XU Qing,ZHOU Chao,ZHAO Shuangshuang,et al.Research on short-term power load forecasting methods based on machine learning[J].Electrical Measurement & Instrumentation,2019,56(23):70-75.
    [5] 祝学昌.基于IFOA-GRNN的短期电力负荷预测方法研究[J].电力系统保护与控制,2020,48(9):121-127.ZHU Xuechang.Research on short-term power load forecasting method based on IFOA-GRNN[J].Power System Protection and Control,2020,48(9):121-127.
    [6] 陈艳平,毛弋,陈萍,等.基于EEMD-样本熵和Elman神经网络的短期电力负荷预测[J].电力系统及其自动化学报,2016,28(3):59-64.CHEN Yanping,MAO Yi,CHEN Ping,et al.Short-term power load forecasting based on EEMD-sample entropy and Elman neural network[J].Journal of Electric Power System and Automation,2016,28(3):59-64.
    [7] 仝新宇,张宇泽,张长生,等.基于广义回归神经网络的有源配电网网供负荷预测方法[J].供用电,2020,37(12):40-45.TONG Xinyu,ZHANG Yuze,ZHANG Changsheng,et al.Load forecasting method of active distribution network based on generalized regression neural network[J].Distribution & Utilization,2020,37(12):40-45.
    [8] 李刚,邹波.改进随机森林的电力负荷预测方法[J].机械设计与制造,2019,57(10):103-105+109.LI Gang,ZOU Bo.Improved random forest power load forecasting method[J].Machine Design & Manufacturing,2019,57(10):103-105+109.
    [9] 龙雯,王同喜.基于深度学习的多特征短期负荷预测[J].电脑知识与技术,2021,17(16):186-187+194.LONG Wen,WANG Tongxi.Multi-feature short-term load forecasting based on deep learning[J].Computer Knowledge and Technology,2021,17(16):186-187+194.
    [10] 陈杰尧,黄炜斌,马光文,等.基于相似性识别的短期负荷动态预测方法[J].电网与清洁能源,2020,36(4):1-7+13.CHEN Jieyao,HUANG Weibin,MA Guangwen,et al.A short-term load dynamic prediction method based on similarity recognition[J].Power System and Clean Energy,2020,36(4):1-7+13.
    [11] 莫文火,陈碧云.基于邻域关系矩阵的电力大数据增量式属性约简研究[J].高压电器,2020,56(8):192-197204.MO Wenhuo,CHEN Biyun.Incremental Attribute reduction of electric power big data based on neighborhood relation matrix[J].High Voltage Apparatus,2020,56(8):192-197204.
    [12] 蔡冬阳,赵申,周玮,等.光伏影响下考虑气象负荷分解和LSSVM的负荷预测[J].计算技术与自动化,2020,39(4):81-85.CAI Dongyang,ZHAO Shen,ZHOU Wei,et al.Load forecasting considering meteorological load decomposition and LSSVM under the influence of photovoltaic[J].Computer Technology and Automation,2020,39(4):81-85.
    [13] 魏晓川,王新刚.基于气象大数据的城市电力负荷预测[J].电测与仪表,2021,58(2):90-95.WEI Xiaochuan,WANG Xingang.Prediction of urban electricity load based on meteorological big data[J].Electrical Measurement & Instrumentation,2021,58(2):90-95.
    [14] 李正浩,李孟凡.基于深度学习的智能型负荷预测方法的研究[J].智慧电力,2020,48(10):78-85+112.LI Zhenghao,LI Mengfan.Smart load forecasting method based on deep learning[J].Smart Power,2020,48(10):78-85+112.
    [15] 蒋铁铮,尹晓博,马瑞,等.基于k-means聚类和模糊神经网络的母线负荷态势感知[J].电力科学与技术学报,2020,35(3):46-54.JIANG Tiezheng,YIN Xiaobo,MA Rui,et al.Bus load situation awareness based on the k-means clustering and fuzzy neural networks[J].Journal of Electric Power Science and Technology,2020,35(3):46-54.
    相似文献
    引证文献
引用本文

荀超,陈伯建,吴翔宇,等.基于改进K-means算法的电力短期负荷预测方法研究[J].电力科学与技术学报,2022,37(1):90-95.
XUN Chao, CHEN Bojian, WU Xiangyu, et al. Research on short-term power load forecasting method based on improved K-means algorithm[J]. Journal of Electric Power Science and Technology,2022,37(1):90-95.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2022-04-01
文章二维码