基于特征检测量的XLPE电缆绝缘老化寿命预测方法
CSTR:
作者:
中图分类号:

TM247

基金项目:

国网浙江省电力有限公司科技项目(5211HZ17000B);国家自然科学基金(61673268)


XLPE cable insulation aging based on feature detection life prediction method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对XLPE电缆绝缘老化影响电力系统稳定运行的问题,以绝缘状态检测项目为基础,提出基于多个特征检测量的偏最小二乘(PLS)老化时间预测模型。首先针对现有的数据样本较小及模型中存在的多重共线性问题,引入最小二乘支持向量回归机(LSSVR)优化模型主成分得分向量;然后利用最新得分向量建立LSSVR-PLS老化时间预测模型;最后利用回归参数T检验法对比检验了模型非线性处理能力,对杭州某区域多根110 kV XLPE电缆样品进行预测分析,结果表明改进模型适用于电缆检测量小样本数据的处理,能够消除原始模型存在的多重共线性问题,并且具有更高的预测精准度,对电缆的运维及电网改造具有重要的指导意义。

    Abstract:

    XLPE insulation aging affects the operation of the power system. Based on the insulation state detection project, this paper proposes a PLS aging time prediction model based on multiple feature detection quantities. Aiming at the small data collected and the multi-collinearity problem in the model, the least squares support vector machine (LSSVR) is introduced to optimize the model principal component score vector. Then, the LSSVR-PLS aging time model is established utilizing the new score vector. Finally, the nonlinear processing ability is compared and tested by a T test and the 110 kV XLPE cable samples in a certain area of Hangzhou is considered. It is shown that the improved model is suitable for the processing of small sample data of cable detection, which can eliminate the multi-collinearity problem existing in the original model and achieve a higher prediction accuracy. The proposed research provides an important guiding significance for the cable operation and maintenance and the transformation of power grid.

    参考文献
    [1] 杨亮,周恺,倪周,等.考虑负荷特性的XLPE电缆绝缘老化程度研究[J].智慧电力,2020,48(10):113-119.YANG Liang,ZHOU Kai,NI Zhou,et al.Analysis of XLPE cable insulation aging considering load characteristics[J].Smart Power,2020,48(10):113-119.
    [2] 边浩然,杨丽君,马志鹏,等.基于累积损伤曲线的电寿命模型步进应力试验方法及在XLPE电缆中的应用[J].中国电力,2020,53(9):125-132.BIAN Haoran,YANG Lijun,MA Zhipeng,et al.Step-stress test method for electrical life model based on cumulative damage curve and its application in XLPE cable[J].Electric Power,2020,53(9):125-132.
    [3] 张悦,陈孝信,钱勇,等.XLPE电缆交叉互联系统中局放脉冲时域特征仿真研究[J].高压电器,2021,57(7):112-118.ZHANG Yue,CHEN Xiaoxin,QIAN Yong,et al.Simulation study on time domain feature of partial discharge pulse in XLPE cable cross-bonding system[J].High Voltage Apparatus,2021,57(7):112-118.
    [4] 黄润知,夏向阳,李明德,等.基于结构相似性算法的单芯电缆局放定位[J].电力科学与技术学报,2019,34(2):161-168.HUANG Ruizhi,XIA Xiangyang,LI Mingde,et.al.Study on partial discharge locationof power cables based on structural similarity index algorithm[J].Journal of Electric Power Science and Technology,2019,34(2):161-168.
    [5] BOUKEZZI L,RONDOT S,JBARA O.A time resolved current method and TSC under vacuum conditions of SEM:trapping and detrapping processes in thermal aged XLPE insulations cables[J].Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms,2017,394((MAR.1)):126-133.
    [6] 詹威鹏,褚学来,申作家,等.加速热氧老化中交联聚乙烯电缆绝缘聚集态结构与介电强度关联性研究[J].中国电机工程学报,2016,36(17):4770-4778.ZHAN Weipeng,CHU Xuelai,SHEN Zuojia,et al.Study on aggregation structure and dielectric strength of XLPE cable insulation in accelerated thermal-oxidative aging[J].Proceeding of the CSEE,2016,36(17):4770-4778.
    [7] 刘刚,吴亮,金尚儿,等.基于电特性的110 kV交联聚乙烯电缆剩余寿命评估[J].高电压技术,2017,43(8):2718-2723.LIU Gang,WU Liang,JIN Shanger,et al.Assessment of 110 kV XLPE cables remaining life based on electrical characteristics[J].High Voltage Engineering,2017,43(8):2718-2723.
    [8] 刘刚,金尚儿,梁子鹏.基于等温松弛电流法和活化能发的110 kV XLPE电缆老化状态评估[J].高电压技术,2016,42(8):2372-2381.LIU Gang,JIN Shanger,LIANG Zipeng.Aging state assessment of 110 kV XLPE cable based on isothermal relaxation current method and activation energy method[J].High Voltage Engineering,2016,42(8):2372-2381.
    [9] 李巍巍,甘德刚,朱轲.基于冲击电压下电缆等效电阻值的绝缘状态评估新方法[J].电测与仪表,2018,55(2):15-19.LI Weiwei,GAN Degang,ZHU Ke.A new method of insulation condition assessment based on equivalent resistance value of cable under impulse voltage[J].Electrical Measurement & Instrumentation,2018,55(2):15-19.
    [10] 张兴隆,毛欣,曾灿.基于冲击电压下有功损耗测量的电缆绝缘状态评估[J].电测与仪表,2016,53(23):28-33.ZHANG Xinglong,MAO Xin,ZENG Can.Assessment of cable insulation condition based on active power loss measurement under impulse voltage[J].Electrical Measurement & Instrumentation,2016,53(23):28-33.
    [11] 范文玲.基于改进型RBF神经网络的矿用电缆剩余寿命研究[D].西安:西安科技大学,2018.
    [12] 李扬.最小二乘法、ε-支持向量回归机与最小二乘支持向量回归机的对比研究[D].上海:华东师范大学,2018.
    [13] 吕游,刘吉臻,杨婷婷,等.基于PLS特征提取和LS-SVM结合的NOx排放特性建模[J].仪器仪表学报,2013,34(11):2419-2425.LV You,LIU Jizhen,YANG Tingting,et al.NOx emission characteristic modeling based on feature extraction using PLS and LS-SVM[J].Chinese Journal of Scientific Instrument,2013,34(11):2419-2425.
    [14] 杨飞豹,高国强,宋臻杰,等.基于频域介电谱和多输出支持向量回归的变压器油纸绝缘状态评估[J].高压电器,2018,54(12):150-157.YANG Feibao,GAO Guoqiang,SONG Zhenjie,et al.Transformer oil-paper insulation condition assessment based on frequency domain dielectric spectroscopy and multi-output support vector regression[J].High Voltage Apparatus,2018,54(12):150-157.
    [15] 杨超,李明德,黄海,等.基于向量运算法的交叉互联XLPE电缆在线监测系统设计[J].电力科学与技术学报,2016,31(3):88-94.YANG Chao,LI Mingde,HUANG Hai,et al.Design of on-line monitoring system for crossing-linked XLPE cable based on vector calculation method[J].Journal of Electric Power Science and Technology,2016,31(3):88-94.
    [16] DALAL S B,GORUR R S,DYER M L.New aging model for 15 kV XLPE distribution cables[C]//The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society,Boulder,USA:IEEE,2004.
    相似文献
    引证文献
引用本文

李登淑,王昕,吴健儿,等.基于特征检测量的XLPE电缆绝缘老化寿命预测方法[J].电力科学与技术学报,2022,37(1):168-177.
LI Dengshu, WANG Xin, WU Jianer, et al. XLPE cable insulation aging based on feature detection life prediction method[J]. Journal of Electric Power Science and Technology,2022,37(1):168-177.

复制
分享
文章指标
  • 点击次数:324
  • 下载次数: 1778
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-04-01
文章二维码