基于特征检测量的XLPE电缆绝缘老化寿命预测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM247

基金项目:

国网浙江省电力有限公司科技项目(5211HZ17000B);国家自然科学基金(61673268)


XLPE cable insulation aging based on feature detection life prediction method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对XLPE电缆绝缘老化影响电力系统稳定运行的问题,以绝缘状态检测项目为基础,提出基于多个特征检测量的偏最小二乘(PLS)老化时间预测模型。首先针对现有的数据样本较小及模型中存在的多重共线性问题,引入最小二乘支持向量回归机(LSSVR)优化模型主成分得分向量;然后利用最新得分向量建立LSSVR-PLS老化时间预测模型;最后利用回归参数T检验法对比检验了模型非线性处理能力,对杭州某区域多根110 kV XLPE电缆样品进行预测分析,结果表明改进模型适用于电缆检测量小样本数据的处理,能够消除原始模型存在的多重共线性问题,并且具有更高的预测精准度,对电缆的运维及电网改造具有重要的指导意义。

    Abstract:

    XLPE insulation aging affects the operation of the power system. Based on the insulation state detection project, this paper proposes a PLS aging time prediction model based on multiple feature detection quantities. Aiming at the small data collected and the multi-collinearity problem in the model, the least squares support vector machine (LSSVR) is introduced to optimize the model principal component score vector. Then, the LSSVR-PLS aging time model is established utilizing the new score vector. Finally, the nonlinear processing ability is compared and tested by a T test and the 110 kV XLPE cable samples in a certain area of Hangzhou is considered. It is shown that the improved model is suitable for the processing of small sample data of cable detection, which can eliminate the multi-collinearity problem existing in the original model and achieve a higher prediction accuracy. The proposed research provides an important guiding significance for the cable operation and maintenance and the transformation of power grid.

    参考文献
    相似文献
    引证文献
引用本文

李登淑,王昕,吴健儿,等.基于特征检测量的XLPE电缆绝缘老化寿命预测方法[J].电力科学与技术学报,2022,37(1):168-177.
LI Dengshu, WANG Xin, WU Jianer, et al. XLPE cable insulation aging based on feature detection life prediction method[J]. Journal of Electric Power Science and Technology,2022,37(1):168-177.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-01
  • 出版日期:
文章二维码