基于双注意力机制优化CNN架构的GIS局部放电模式识别
CSTR:
作者:
通讯作者:

王彦彪(1989-),男,硕士,工程师,主要从事电网智能运检技术研究;E-mail:2643469402@qq.com

中图分类号:

TM85

基金项目:

国家电网公司科技项目(SGTJBHOOYJJS1902138)


PD pattern recognition for GIS based on CNN architecture optimized by the double attention mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    GIS局部放电模式识别是其绝缘状态评估的重要部分,为对GIS局部放电信号进行准确、高效识别,提出一种基于双注意力机制优化CNN的GIS局部放电信号模式识别方法。首先,搭建GIS局部放电测试平台,并在GIS气室内人为设置4种典型缺陷,分别通过超高频和超声波检测法对不同缺陷局部放电信号进行采集;然后,基于二者数据特点分别进行数据预处理,并构建由超高频局部放电谱图图像特征和超声信号格拉米角场密度分布组成的特征空间;最后,通过双注意力机制优化的卷积神经网络对输入图像进行深层特征提取,由网络尾端的Softmax分类器进行结果预测。结果表明:融合多特征参数算法能够达到97.57%左右的识别准确率,高于单一特征识别率;同时在同一网络输入时,双注意力机制优化的卷积神经网络在算法识别率、训练速度和鲁棒性等方面均优于常见网络算法。

    Abstract:

    The PD pattern recognition is an important part of the insulation state evaluation of GIS. For the purpose of the accurate and efficient identification of PD signals, a new method of PD signal pattern recognition is proposed based on CNN optimized by the dual attention mechanism in this paper. Firstly, the GIS PD test platform is built, and four typical defects are set up in GIS chamber. The PD signals of different defects are collected by the UHF and ultrasonic detection respectively. Then, the data preprocessing is carried out based on the characteristics of the data obtained by methods mentioned above respectively. The feature space composed by the image features of UHF PD spectrum and the gram angle field density distribution of ultrasonic signal are constructed. Finally, the input image is extracted through the method of convolutional neural network optimized by double attention mechanism, and the results are predicted by a softmax classifier at the end of the network. It is shown that 97.57% recognition accuracy can be achieved by the fusion algorithm, which is higher than the recognition rate considering the single feature. The convolutional neural network optimized by the double attention mechanism is superior to the common algorithm in the aspects of the recognition rate, training speed and robustness.

    参考文献
    [1] 张利,屈斌,王永宁,等.GIS壳体振动机理和局部放电优化诊断与应用[J].中国电力,2022,55(3):80-86.ZHANG Li,QU Bin,WANG Yongning,et al.GIS shell vibration mechanism and partial discharge optimization diagnosis[J].Electric Power,2022,55(3):80-86.
    [2] 朱航,高波,刘亚婕,等.硫腐蚀对变压器油纸绝缘局部放电过程影响研究[J].高压电器,2020,56(7):181-188.ZHU Hang,GAO Bo,LIU Yajie,et al.Influence of sulfur corrosion on partial discharge process of transformer oil-paper insulation[J].High Voltage Apparatus,2020,56(7):181-188.
    [3] 吴童,孙抗,师文文.基于AVMD-自适应小波包法的电缆局部放电去噪研究[J].电力系统保护与控制,2020,48(14):95-103.WU Tong,SUN Kang,SHI Wenwen.Research on cable partial discharge denoising based on an AVMD-adaptive wavelet packet method[J].Power System Protection and Control,2020,48(14):95-103.
    [4] 牛勃,魏莹,马飞越,等.电气设备长间歇性局部放电检测系统研究[J].电测与仪表,2021,58(7):173-179.NIU Bo,WEI Ying,MA Feiyue,et al.Research on long-interval sparse partial discharge detection system for electrical equipment[J].Electrical Measurement & Instrumentation,2021,58(7):173-179.
    [5] 于瑞,高波,周芃,等.不同曲率下针—板沿面放电模型白斑发展过程及放电特性[J].高电压技术,2020,46(4):1387-1395.YU Rui,GAO Bo,ZHOU Peng,et al.Development process and discharge characteristics of white marks on the pressboard surface in needle-plane model under different curvatures[J].High Voltage Engineering,2020,46(4):1387-1395.
    [6] REFFAS A,BEROUAL A,MOULAI H.Comparison of creeping discharges propagating over pressboard immersed in olive oil,mineral oil and other natural and synthetic ester liquids under DC voltage[J].IEEE Transactions on Dielectrics and Electrical Insulation,2019,26(6):2019-2026.
    [7] 李斯盟,李清泉,刘洪顺,等.基于雷达谱图的交直流复合电压下油纸针板模型局放阶段识别[J].中国电机工程学报,2018,38(19):5897-5908+5948.LI Simeng,LI Qingquan,LIU Hongshun,et al.A recognition method for PD development stage in oil-pressboard insulation with needle-plate model at AC-DC mixed voltage based on radar maps[J].Proceedings of the CSEE,2018,38(19):5897-5908+5948.
    [8] 杨可军,杨建旭,陈思宝,等.基于深度可分离卷积及SVD输电线路缺陷检测[J].智慧电力,2020,48(10):64-69+77.YANG Kejun,YANG Jianxu,CHENG Sibao,et al.Methods of defect detection in transmission line based on depthwise separable convolution and SVD[J].Smart Power,2020,48(10):64-69+77.
    [9] 朱煜峰,许永鹏,陈孝信,等.基于卷积神经网络的直流XLPE电缆局部放电模式识别技术[J].电工技术学报,2020,35(3):659-668.ZHU Yufeng,XU Yongpeng,CHEN Xiaoxin,et al.Partial discharge pattern recognition technology of DC XLPE cable based on convolutional neural network[J].Transactions of China Electrotechnical Society,2020,35(3):659-668.
    [10] 万晓琪,宋辉,罗林根,等.卷积神经网络在局部放电图像模式识别中的应用[J].电网技术,2019,43(6):2219-2226.WAN Xiaoqi,SONG Hui,LUO Lingen,et al.Application of convolutional neural network in pattern recognition of partial discharge image[J].Power System Technology,2019,43(6):2219-2226.
    [11] REN M,ZHANG C X,DONG M,et al.Fault prediction of gas-insulated system with hypersensitive optical monitoring and spectral information[J].International Journal of Electrical Power & Energy Systems,2020,119:105945.
    [12] 魏文兵,毛钧毅,荣娜,等.采用随机矩阵与CNN的暂态电压稳定快速评估[J].电网与清洁能源,2020,36(11):68-76.WEI Wenbing,MAO Junyi,RONG Na,et al.Fast evaluation of transient voltage stability using random matrix and convolutional neural network[J].Power System and Clean Energy,2020,36(11):68-76.
    [13] 严智民,杨凯,王诗航,等.硅脂对硅橡胶电树枝劣化特性的影响机制研究[J].中国电机工程学报,2019,39(2):604-611.YAN Zhimin,YANG Kai,WANG Shihang.Study on the mechanism of silicone grease on electrical tree degradation of silicone rubber[J].Proceedings of the CSEE,2019,39(2):604-611.
    [14] 杨帆,王干军,彭小圣,等.基于卷积神经网络的高压电缆局部放电模式识别[J].电力自动化设备,2018,38(5):123-128.YANG Fan,WANG Ganjun,PENG Xiaosheng,et al.Partial discharge pattern recognition of high voltage cable based on convolutional neural network[J].Electric Power Automation Equipment,2018,38(5):123-128.
    [15] LYU C G,HUO Z Q,CHENG X,et al.Distributed optical fiber sensing intrusion pattern recognition based on GAF and CNN[J].Journal of Lightwave Technology,2020,38(15):4174-4182.
    [16] ZHANG G,SI Y J,WANG D,et al.Automated detection of myocardial infarction using a gramian angular field and principal component analysis network[J].IEEE Access,2019,7:171570-171583.
    [17] TANG H H,LIAO Z Q,CHEN P,et al.A novel convolutional neural network for low-speed structural fault diagnosis under different operating condition and its understanding via visualization[J].IEEE Transactions on Instrumentation and Measurement,2021,70:9167272.
    [18] MA J Y,ZHANG H,YI P,et al.SCSCN:a separated channel-spatial convolution net with attention for single-view reconstruction[J].IEEE Transactions on Industrial Electronics,2020,67(10):8649-8658.
    [19] ZHANG L,CHEN C S,MOW W H.Accurate modeling and efficient estimation of the print-capture channel with application in barcoding[J].IEEE Transactions on Image Processing,2019,28(1):464-478.
    [20] 张开放,张黎,赵彤.高频正弦电应力对气-固绝缘局部放电的影响[J].高电压技术,2019,45(12):3879-3888.ZHANG Kaifang,ZHANG Li,ZHAO Tong.Influence of high frequency sinusoidal electrical stress on partial discharge of gas-solid insulation[J].High Voltage Engineering,2019,45(12):3879-3888.
    [21] ZHU M H,JIAO L C,LIU F,et al.Residual spectral-spatial attention network for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2021,59(1):449-462.
    [22] 汤浩,李金忠,张贺军,等.特高压直流换流变压器阀侧套管高环温强电流下轴径向的温度分布规律[J].中国电机工程学报,2017,37(18):5494-5503.TANG Hao,LI Jinzhong,ZHANG Hejun,et al.Analysis of temperature distribution in the radial direction of the valve under casing hightemperature and high current in the UHVDC converter transformer[J].Proceedings of the CSEE,2017,37(18):5494-5503.
    [23] LIU Q L,CHE X J,BIE M.R-STAN:residual spatial-temporal attention network for action recognition[J].IEEE Access,2019,7:82246-82255.
    [24] 薛磊,柴琦,兀鹏越,等.一种高分辨率的便携式GIS局部放电检测装置[J].电力科学与技术学报,2019,34(1):149-153.XUE Lei,CHAI Qi,WU Pengyue,et al.A high resolution portable partial discharge detection device for GIS[J].Journal of Electric Power Science and Technology,2019,34(1):149-153.
    相似文献
    引证文献
引用本文

王彦彪,陈振勇,郭文萍,等.基于双注意力机制优化CNN架构的GIS局部放电模式识别[J].电力科学与技术学报,2022,37(2):22-29.
WANG Yanbiao, CHEN Zhenyong, GUO Wenping, et al. PD pattern recognition for GIS based on CNN architecture optimized by the double attention mechanism[J]. Journal of Electric Power Science and Technology,2022,37(2):22-29.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2022-05-26
文章二维码