基于灰狼优化算法的负荷模型参数辨识
CSTR:
作者:
中图分类号:

TM863

基金项目:

国家自然科学基金(51777176);云南电网有限责任公司科技项目(YNKJXM20180017)


Research on parameter identification of load model based on GWO algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    为了提高负荷建模准确性以满足电力系统仿真计算准确度的要求,本文从总体测辨法的角度提出一种基于灰狼优化(GWO)算法的负荷模型参数辨识策略。该负荷模型参数辨识策略以电网发生扰动时变电站母线电压、电压相角为输入,选取感应电动机并联ZIP负荷的经典负荷模型,通过灰狼算法实现对目标函数的迭代优化获得一组最优的负荷模型参数,使得模型响应能较好拟合样本功率曲线。GWO算法具有较强的快速收敛能力和全局搜索能力,将其运用于负荷建模参数辨识实践中,可以有效提高辨识精度。通过在PSD-BPA软件中建立电力系统仿真模型,以变电站母线处的扰动数据作为负荷建模的输入数据对2个算例进行仿真。仿真结果表明,GWO相对于常用的粒子群算法在计算精度、收敛速度等方面都具有明显优势。

    Abstract:

    In order to improve the accuracy of load modeling to meet the requirements of power system simulation calculation accuracy, this paper proposes a load model parameter identification strategy based on the grey wolf optimization (GWO) algorithm from the perspective of overall measurement and identification method. The load model parameter identification strategy takes the substation bus voltage and voltage phase angle as the input when the power grid is disturbed, selects the classic load model of the induction motor parallel ZIP load. The strategy realizes the iterative optimization of the objective function through the gray wolf algorithm to obtain a set of optimal load model parameters, so that the model response can better fit the sample power curve. GWO algorithm has strong fast convergence ability and global search ability. Its application in load modeling parameter identification practice can effectively improve the identification accuracy. By establishing a power system simulation model in PSD-BPA software, two examples are simulated with the disturbance data at the substation bus as the input data of the load modeling. Simulation results show that GWO has obvious advantages in calculation accuracy and convergence speed compared with the commonly used particle swarm optimization algorithm.

    参考文献
    [1] 郑秋宏,韩蓓,李国杰.考虑逆变器容量约束的广义负荷建模研究[J].电测与仪表,2020,57(1):55-61.ZHENG Qiuhong,HAN Bei,LI Guojie.Research on generalized load modeling considering inverter capacity[J].Electrical Measurement & Instrumentation,2020,57(1):55-61.
    [2] BU F K,MA Z X,YUAN Y X,et al.WECC composite load model parameter identification using evolutionary deep reinforcement learning[J].IEEE Transactions on Smart Grid,2020,11(6):5407-5417.
    [3] 余洋,谢仁杰,卢健斌,等.平抑新能源功率波动的集群温控负荷建模及控制[J].智慧电力,2020,48(3):69-75.YU Yang,XIE Renjie,LU Jianbin,et al.Modeling and control of aggregated thermostatically controlled loads for smoothing power fluctuation of renewable energy sources[J].Smart Power,2020,48(3):69-75.
    [4] 屈星,李欣然,宋军英,等.考虑配电网调压的综合负荷模型[J].电工技术学报,2018,33(4):759-770.QU Xing,LI Xinran,SONG Junying,et al.Composite load model considering voltage regulation of distribution network[J].Transactions of China Electrotechnical Society,2018,33(4):759-770.
    [5] ZHU Y,MILANOVIC' J V.Automatic identification of power system load models based on field measurements[J].IEEE Transactions on Power Systems,2018,33(3):3162-3171.
    [6] ROUHANI A,ABUR A.Real-time dynamic parameter estimation for an exponential dynamic load model[J].IEEE Transactions on Smart Grid,2016,7(3):1530-1536.
    [7] ZHANG K Q,ZHU H,GUO S M.Dependency analysis and improved parameter estimation for dynamic composite load modeling[J].IEEE Transactions on Power Systems,2017,32(4):3287-3297.
    [8] 潘晨,滕欢,梁梦可,等.基于改进粒子群算法考虑阀点效应的经济负荷最优分配[J].电力科学与技术学报,2020,35(1):151-156+162.PAN Chen,TENG Huan,LIANG Mengke,et al.Optimal distribution of economic loads based on the improved particle swarm optimization considering valve-point effects[J].Journal of Electric Power Science and Technology,2020,35(1):151-156+162.
    [9] 朱林,王贝,付东,等.人工鱼群算法在同调发电机组聚合中的应用[J].电力科学与技术学报,2020,35(3):61-67.ZHU Lin,WANG Bei,FU Dong,et al.Application of an artificial fish swarm algorithm in the aggregation of coherent generators[J].Journal of Electric Power Science and Technology,2020,35(3):61-67.
    [10] 沈良雄.基于改进粒子群算法的电力负荷模型参数辨识研究[D].大连:大连海事大学,2013.
    [11] 李培强,李慧,李欣然.基于灵敏度与相关性的综合负荷模型参数优化辨识策略[J].电工技术学报,2016,31(16):181-188.LI Peiqiang,LI Hui,LI Xinran.Optimized identification strategy for composite load model parameters based on sensitivity and correlation analysis[J].Transactions of China Electrotechnical Society,2016,31(16):181-188.
    [12] 杨韬,罗萍萍,龚锦霞,等.基于改进无迹卡尔曼滤波的短线路同杆并架双回线参数辨识[J].电力系统保护与控制,2021,49(5):36-45.YANG Tao,LUO Pingping,GONG Jinxia,et al.Parameter identification of short parallel double-lines based on a modified unscented Kalman filter[J].Power System Protection and Control,2021,49(5):36-45.
    [13] 刘力卿,何思名,冯军基,等.一种快速高鲁棒性变压器铁心Jiles-Atherton磁滞模型参数辨识方法[J].高压电器,2020,56(1):55-60.LIU Liqing,HE Siming,FENG Junji,et al.Fast and robust parameter identification method for Jiles-Atherton hysteresis model of transformer core[J].High Voltage Apparatus,2020,56(1):55-60.
    [14] 杨梓俊,丁小叶,陆晓,等.面向需求响应的变频空调负荷建模与运行控制[J].电力系统保护与控制,2021,49(15):132-140.YANG Zijun,DING Xiaoye,LU Xiao,et al.Inverter air conditioner load modeling and operational control for demand response[J].Power System Protection and Control,2021,49(15):132-140.
    [15] MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61.
    [16] 金明辉.基于状态评估的智能配电网态势感知方法研究[J].电网与清洁能源,2020,36(5):69-74.JIN Minghui.Research on situational sensing method of intelligent distribution network based on state assessment[J].Power System and Clean Energy,2020,36(5):69-74.
    [17] MA J,HE R M,DAVID J H.Composite load modeling via measurement approach[J].IEEE Transactions on Power Systems,2006,21(2):663-672.
    [18] 徐杰彦,许雯旸,褚渊,等.区域尺度住宅建筑日用电负荷模型构建方法研究[J].中国电力,2020,53(8):29-39.XU Jieyan,XU Wenyang,CHU Yuan,et al.Residential electricity load model construction in district scale[J].Electric Power,2020,53(8):29-39.
    [19] 中国电力科学研究院.近期东北—华北—华中同步互联系统仿真计算中电动机参数选取的建议[R].北京:中国电力科学研究院,2005.
    [20] 石景海.考虑负荷时变性的大区电网负荷建模研究[D].北京:华北电力大学(北京),2004.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭成,谢浩,孟贤,等.基于灰狼优化算法的负荷模型参数辨识[J].电力科学与技术学报,2022,37(2):30-37.
GUO Cheng, XIE Hao, MENG Xian, et al. Research on parameter identification of load model based on GWO algorithm[J]. Journal of Electric Power Science and Technology,2022,37(2):30-37.

复制
分享
文章指标
  • 点击次数:367
  • 下载次数: 1076
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-05-26
文章二维码