基于Q学习的区域综合能源系统低碳运行策略
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM73;TK018

基金项目:

国家自然科学基金(51977156);国网福建省电力有限公司科技项目(52130N19000P)


Low-carbon operation strategy of regional integrated energy system based on the Q learning algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    考虑区域综合能源系统运行时的经济性与低碳性,提出一种基于Q学习的区域综合能源系统低碳运行策略研究方法。首先,基于能量枢纽的概念构建区域综合能源系统的基本结构模型;接着,以计及二氧化碳治理费用的日运行费用最低为目标函数,提出区域综合能源系统的低碳经济运行策略;然后,针对低碳经济运行策略建立其马尔可夫决策问题,并采用改进的Q学习进行求解。通过仿真验证Q学习算法求解区域综合能源系统运行策略的有效性,结果表明,所提运行策略能充分发挥区域综合能源系统的多能互补优势,实现系统低碳经济运行,为区域综合能源系统的运行优化问题提供思路和策略。

    Abstract:

    Considering the economic and low-carbon performance of regional integrated energy systems, a method of low-carbon operation strategy of regional integrated energy systems based on the Q learning is proposed. Firstly, the basic operation model of such regional integrated energy system is constructed on the basis of the energy hub. Then, taking the minimum daily operating cost as the objective function, including the carbon dioxide treatment cost, a low-carbon economic operation strategy of regional integrated energy system is proposed. Then, the low-carbon economy operation strategy is modeled through the Markov decision problems, and the improved Q learning is utilized to solve thoseproblems. The simulation results verify the effectiveness of Q learning algorithm for solving operation strategies in the regional integrated energy system. It is shown that the proposed operation strategy can give full play to the multi-energy complementary advantage, and realize the economic and low-carbon objectives during operation of regional integrated energy system.

    参考文献
    相似文献
    引证文献
引用本文

郑洁云,宋倩芸,吴桂联,陈浩,胡志坚,陈志,翁菖宏,陈锦鹏.基于Q学习的区域综合能源系统低碳运行策略[J].电力科学与技术学报,2022,(2):106-115. ZHENG Jieyun, SONG Qianyun, WU Guilian, CHEN Hao, HU Zhijian, CHEN Zhi, WENG Changhong, CHEN Jinpeng. Low-carbon operation strategy of regional integrated energy system based on the Q learning algorithm[J]. Journal of Electric Power Science and Technology,2022,(2):106-115.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-26
  • 出版日期: