基于Q学习的区域综合能源系统低碳运行策略
CSTR:
作者:
中图分类号:

TM73;TK018

基金项目:

国家自然科学基金(51977156);国网福建省电力有限公司科技项目(52130N19000P)


Low-carbon operation strategy of regional integrated energy system based on the Q learning algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    考虑区域综合能源系统运行时的经济性与低碳性,提出一种基于Q学习的区域综合能源系统低碳运行策略研究方法。首先,基于能量枢纽的概念构建区域综合能源系统的基本结构模型;接着,以计及二氧化碳治理费用的日运行费用最低为目标函数,提出区域综合能源系统的低碳经济运行策略;然后,针对低碳经济运行策略建立其马尔可夫决策问题,并采用改进的Q学习进行求解。通过仿真验证Q学习算法求解区域综合能源系统运行策略的有效性,结果表明,所提运行策略能充分发挥区域综合能源系统的多能互补优势,实现系统低碳经济运行,为区域综合能源系统的运行优化问题提供思路和策略。

    Abstract:

    Considering the economic and low-carbon performance of regional integrated energy systems, a method of low-carbon operation strategy of regional integrated energy systems based on the Q learning is proposed. Firstly, the basic operation model of such regional integrated energy system is constructed on the basis of the energy hub. Then, taking the minimum daily operating cost as the objective function, including the carbon dioxide treatment cost, a low-carbon economic operation strategy of regional integrated energy system is proposed. Then, the low-carbon economy operation strategy is modeled through the Markov decision problems, and the improved Q learning is utilized to solve thoseproblems. The simulation results verify the effectiveness of Q learning algorithm for solving operation strategies in the regional integrated energy system. It is shown that the proposed operation strategy can give full play to the multi-energy complementary advantage, and realize the economic and low-carbon objectives during operation of regional integrated energy system.

    参考文献
    [1] CHEN J W,YU T,XU Y,et al.Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies[J].Applied Energy,2019,242:260-272.
    [2] 龚晓琴,王进,王珑,等.含电转气的电—气互联综合能源系统低碳经济运行[J].电力科学与技术学报,2020,35(2):76-83.GONG Xiaoqin,WANG Jin,WANG Long,et al.Low-carbon economic operation for integrated electricity and natural-gas energy system with power-to-gas[J].Journal of Electric Power Science and Technology,2020,35(2):76-83.
    [3] 高强,刘畅,金道杰,等.考虑综合需求响应的园区综合能源系统优化配置[J].高压电器,2021,57(8):159-168.GAO Qiang,LIU Chang,JIN Daojie,et al.Optimal configuration of Park-level integrated energy system considering integrated demand response[J].High Voltage Apparatus,2021,57(8):159-168.
    [4] 张利军,王一铮,陈飞,等.计及能源网络特性的综合能源系统最优协调规划[J].电力科学与技术学报,2020,35(1):3-13.ZHANG Lijun,WANG Yizheng,CHEN Fei,et al.Optimal coordinated planning of an integrated energy system considering characteristics of energy network[J].Journal of Electric Power Science and Technology,2020,35(1):3-13.
    [5] 白雪婷,杨瑞琪,陈泽春,等.计及综合需求响应的园区综合能源系统优化运行[J].电力科学与技术学报,2021,36(3):27-35.BAI Xueting,YANG Ruiqi,CHEN Zechun,et al.Optimal operation of the park integrated energy system considering integrated demand response[J].Journal of Electric Power Science and Technology,2021,36(3):27-35.
    [6] HOU L,SU K,LIU Y,et al.Modeling and simulation of regional integrated energy system operation based on refined thermal equipment model[C]//IEEE Sustainable Power and Energy Conference(ISPEC),Beijing,China,2019.
    [7] 王海洋,李珂,张承慧,等.基于主从博弈的社区综合能源系统分布式协同优化运行策略[J].中国电机工程学报,2020,40(17):5435-5445.WANG Haiyang,LI Ke,ZHANG Chenghui,et al.Distributed coordinative optimal operation of community integrated energy system based on Stackelberg game[J].Proceedings of the CSEE,2020,40(17):5435-5445.
    [8] 徐文涛,李明轩.园区综合能源服务利益方运营关系和经营战略[J].中国电力,2021,54(4):151-157.XU Wentao,LI Mingxuan.Operation relationship and business strategy of stakeholders of park-level integrated energy services[J].Electric Power,2021,54(4):151-157.
    [9] 徐晨博,薛友,林紫菡,等.计及可转移负荷的电—气综合能源系统多目标优化[J].电力科学与技术学报,2019,34(3):13-23.XU Chenbo,XUE You,LIN Zihan,et al.Multi-objective optimization of an integrated electricity-gas energy system considering transferable loads[J].Journal of Electric Power Science and Technology,2019,34(3):13-23.
    [10] ZHU X,YANG J,LIU Y,et al.Optimal scheduling method for a regional integrated energy system considering joint virtual energy storage[J].IEEE Access,2019,7:138260-138272.
    [11] YANG H Z,LI M L,JIANG Z Y,et al.Multi-time scale optimal scheduling of regional integrated energy systems considering integrated demand response[J].IEEE Access,2020,8:5080-5090.
    [12] 白宏坤,尹硕,李虎军,等.计及碳交易成本的多能源站综合能源系统规划[J].电力科学与技术学报,2019,34(1):11-19.BAI Hongkun,YIN Shuo,LI Hujun,et al.Optimal planning of multi-energy stations considering carbon-trading cost[J].Journal of Electric Power Science and Technology,2019,34(1):11-19.
    [13] 杨挺,赵黎媛,王成山.人工智能在电力系统及综合能源系统中的应用综述[J].电力系统自动化,2019,43(1):2-14.YANG Ting,ZHAO Liyuan,WANG Chengshan.Review on application of artificial intelligence in power system and integrated energy system[J].Automation of Electric Power Systems,2019,43(1):2-14.
    [14] LU R Z,HONG S H,ZHANG X F.A dynamic pricing demand response algorithm for smart grid:reinforcement learning approach[J].Applied Energy,2018,220:220-230.
    [15] 瞿凯平,张孝顺,余涛,等.基于知识迁移Q学习算法的多能源系统联合优化调度[J].电力系统自动化,2017,41(15):18-25.QU Kaiping,ZHANG Xiaoshun,YU Tao,et al.Knowledge transfer based Q-learning algorithm for optimal dispatch of multi-energy system[J].Automation of Electric Power Systems,2017,41(15):18-25.
    [16] 金璐,何伟,闫华光,等.考虑多评价指标的可再生微能源网双层优化配置[J].电测与仪表,2022,59(2):112-119.JIN Lu,HE Wei,YAN Huaguang,et al.Double layer optimal allocation of renewable micro energy network considering multiple evaluation indexes[J].Electrical Measurement & Instrumentation,2022,59(2):112-119.
    [17] 张宁,孙秋野,马大中.基于模糊Q学习的自能源综合能量管理策略[J].全球能源互联网,2019,2(6):530-537.ZHANG Ning,SUN Qiuye,MA Dazhong.Comprehensive energy management strategy of we-energy based on fuzzy Q-learning[J].Journal of Global Energy Interconnection,2019,2(6):530-537.
    [18] ALFAVERH F,DENA M,SUN Y.Demand response strategy based on reinforcement learning and fuzzy reasoning for home energy management[J].IEEE Access,2020,8:39310-39321.
    [19] 刘洪,李吉峰,葛少云,等.基于多主体博弈与强化学习的并网型综合能源微网协调调度[J].电力系统自动化,2019,43(1):40-50.LIU Hong,LI Jifeng,GE Shaoyun,et al.Coordinated scheduling of grid-connected integrated energy microgrid based on multi-agent game and reinforcement learning[J].Automation of Electric Power Systems,2019,43(1):40-50.
    [1] CHEN J W,YU T,XU Y,et al.Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies[J].Applied Energy,2019,242:260-272.
    [2] 龚晓琴,王进,王珑,等.含电转气的电—气互联综合能源系统低碳经济运行[J].电力科学与技术学报,2020,35(2):76-83.GONG Xiaoqin,WANG Jin,WANG Long,et al.Low-carbon economic operation for integrated electricity and natural-gas energy system with power-to-gas[J].Journal of Electric Power Science and Technology,2020,35(2):76-83.
    [3] 高强,刘畅,金道杰,等.考虑综合需求响应的园区综合能源系统优化配置[J].高压电器,2021,57(8):159-168.GAO Qiang,LIU Chang,JIN Daojie,et al.Optimal configuration of Park-level integrated energy system considering integrated demand response[J].High Voltage Apparatus,2021,57(8):159-168.
    [4] 张利军,王一铮,陈飞,等.计及能源网络特性的综合能源系统最优协调规划[J].电力科学与技术学报,2020,35(1):3-13.ZHANG Lijun,WANG Yizheng,CHEN Fei,et al.Optimal coordinated planning of an integrated energy system considering characteristics of energy network[J].Journal of Electric Power Science and Technology,2020,35(1):3-13.
    [5] 白雪婷,杨瑞琪,陈泽春,等.计及综合需求响应的园区综合能源系统优化运行[J].电力科学与技术学报,2021,36(3):27-35.BAI Xueting,YANG Ruiqi,CHEN Zechun,et al.Optimal operation of the park integrated energy system considering integrated demand response[J].Journal of Electric Power Science and Technology,2021,36(3):27-35.
    [6] HOU L,SU K,LIU Y,et al.Modeling and simulation of regional integrated energy system operation based on refined thermal equipment model[C]//IEEE Sustainable Power and Energy Conference(ISPEC),Beijing,China,2019.
    [7] 王海洋,李珂,张承慧,等.基于主从博弈的社区综合能源系统分布式协同优化运行策略[J].中国电机工程学报,2020,40(17):5435-5445.WANG Haiyang,LI Ke,ZHANG Chenghui,et al.Distributed coordinative optimal operation of community integrated energy system based on Stackelberg game[J].Proceedings of the CSEE,2020,40(17):5435-5445.
    [8] 徐文涛,李明轩.园区综合能源服务利益方运营关系和经营战略[J].中国电力,2021,54(4):151-157.XU Wentao,LI Mingxuan.Operation relationship and business strategy of stakeholders of park-level integrated energy services[J].Electric Power,2021,54(4):151-157.
    [9] 徐晨博,薛友,林紫菡,等.计及可转移负荷的电—气综合能源系统多目标优化[J].电力科学与技术学报,2019,34(3):13-23.XU Chenbo,XUE You,LIN Zihan,et al.Multi-objective optimization of an integrated electricity-gas energy system considering transferable loads[J].Journal of Electric Power Science and Technology,2019,34(3):13-23.
    [10] ZHU X,YANG J,LIU Y,et al.Optimal scheduling method for a regional integrated energy system considering joint virtual energy storage[J].IEEE Access,2019,7:138260-138272.
    [11] YANG H Z,LI M L,JIANG Z Y,et al.Multi-time scale optimal scheduling of regional integrated energy systems considering integrated demand response[J].IEEE Access,2020,8:5080-5090.
    [12] 白宏坤,尹硕,李虎军,等.计及碳交易成本的多能源站综合能源系统规划[J].电力科学与技术学报,2019,34(1):11-19.BAI Hongkun,YIN Shuo,LI Hujun,et al.Optimal planning of multi-energy stations considering carbon-trading cost[J].Journal of Electric Power Science and Technology,2019,34(1):11-19.
    [13] 杨挺,赵黎媛,王成山.人工智能在电力系统及综合能源系统中的应用综述[J].电力系统自动化,2019,43(1):2-14.YANG Ting,ZHAO Liyuan,WANG Chengshan.Review on application of artificial intelligence in power system and integrated energy system[J].Automation of Electric Power Systems,2019,43(1):2-14.
    [14] LU R Z,HONG S H,ZHANG X F.A dynamic pricing demand response algorithm for smart grid:reinforcement learning approach[J].Applied Energy,2018,220:220-230.
    [15] 瞿凯平,张孝顺,余涛,等.基于知识迁移Q学习算法的多能源系统联合优化调度[J].电力系统自动化,2017,41(15):18-25.QU Kaiping,ZHANG Xiaoshun,YU Tao,et al.Knowledge transfer based Q-learning algorithm for optimal dispatch of multi-energy system[J].Automation of Electric Power Systems,2017,41(15):18-25.
    [16] 金璐,何伟,闫华光,等.考虑多评价指标的可再生微能源网双层优化配置[J].电测与仪表,2022,59(2):112-119.JIN Lu,HE Wei,YAN Huaguang,et al.Double layer optimal allocation of renewable micro energy network considering multiple evaluation indexes[J].Electrical Measurement & Instrumentation,2022,59(2):112-119.
    [17] 张宁,孙秋野,马大中.基于模糊Q学习的自能源综合能量管理策略[J].全球能源互联网,2019,2(6):530-537.ZHANG Ning,SUN Qiuye,MA Dazhong.Comprehensive energy management strategy of we-energy based on fuzzy Q-learning[J].Journal of Global Energy Interconnection,2019,2(6):530-537.
    [18] ALFAVERH F,DENA M,SUN Y.Demand response strategy based on reinforcement learning and fuzzy reasoning for home energy management[J].IEEE Access,2020,8:39310-39321.
    [19] 刘洪,李吉峰,葛少云,等.基于多主体博弈与强化学习的并网型综合能源微网协调调度[J].电力系统自动化,2019,43(1):40-50.LIU Hong,LI Jifeng,GE Shaoyun,et al.Coordinated scheduling of grid-connected integrated energy microgrid based on multi-agent game and reinforcement learning[J].Automation of Electric Power Systems,2019,43(1):40-50.
    [20] 冉华军,祝杰,张涛.基于类电磁机制算法的综合能源系统多目标优化调度[J].智慧电力,2022,50(3):22-29.RAN Huajun,ZHU Jie,ZHANG Tao.Multi-objective optimal scheduling of integrated energy system based on Electromagnetism-like mechanism algorithm[J].Smart Power,2022,50(3):22-29.
    [21] 田丰,包存宽.充分利用规划力量推动实现碳达峰碳中和目标[N].中国环境报,2021-01-14(003)[2021-04-05].http://49.5.6.212/html/2021-01/14/content_62271.htm.
    [22] 王瑞,程杉,汪业乔,等.基于多主体主从博弈的区域综合能源系统低碳经济优化调度[J].电力系统保护与控制,2022,50(5):12-21.WANG Rui,CHENG Shan,WANG Yeqiao,et al.Low-carbon and economic optimization of a regional integrated energy system based on a master-slave game with multiple stakeholders[J].Power System Protection and Control,2022,50(5):12-21.
    [23] CHENG Y H,ZHANG N,KANG C Q,et al.Low-carbon operation of multiple energy systems based on ener-gy-carbon integrated prices[J].IEEE Transactions on Smart Grid,2020,11(2):1307-1318.
    [24] 马喜平,沈渭程,甄文喜,等.基于低碳目标的电气综合能源系统优化调度策略研究[J].电网与清洁能源,2021,37(12):116-122.MA Xiping,SHEN Weicheng,ZHEN Wenxi,et al.A study on the optimal scheduling strategy of electric-gas-thermal integrated energy system based on low carbon target[J].Power System and Clean Energy,2021,37(12):116-122.
    [25] 曹严,穆云飞,贾宏杰,等.考虑建设时序的园区综合能源系统多阶段规划[J].中国电机工程学报,2020,40(21):6815-6828.CAO Yan,MU Yunfei,JIA Hongjie,et al.Multi-stage planning of park-level integrated energy system considering construction time sequence[J].Proceedings of the CSEE,2020,40(21):6815-6828.
    相似文献
    引证文献
引用本文

郑洁云,宋倩芸,吴桂联,等.基于Q学习的区域综合能源系统低碳运行策略[J].电力科学与技术学报,2022,37(2):106-115.
ZHENG Jieyun, SONG Qianyun, WU Guilian, et al. Low-carbon operation strategy of regional integrated energy system based on the Q learning algorithm[J]. Journal of Electric Power Science and Technology,2022,37(2):106-115.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2022-05-26
文章二维码