电力系统低模型耦合智能状态估计
CSTR:
作者:
中图分类号:

TM73

基金项目:

中国南方电网有限责任公司科技项目(ZDKJXM20180087)


Smart power system state estimation with low model coupling
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    在传统电力系统状态估计中,状态修正方程的迭代步长一般选取固定值,该方法常因数据质量低、网络条件复杂而不能有效收敛。为解决该问题并提高状态估计的适配性,首先,对经典逻辑函数进行重构,找到在图像上与状态估计高质量数值迭代具有天然适配性的母函数,并将其作为步长控制因子,通过控制参数实现步长因子的智能调整。然后,引入权因子函数,使算法在迭代过程中执行变权操作,可降低不良数据的影响。与解析方法调整步长的策略相比,该方法具有对模型耦合性较低、可移植性强的特点。最后,以IEEE 30节点系统为例,在量测出现不良数据和网络准病态、病态的条件下,验证所提方法的数值稳定性、运算效率和估计质量均明显优于传统固定步长方法。

    Abstract:

    In traditional power system state estimation (PS-SE), the iterative step size of the state correction equation is generally fixed. But this method often fails to converge effectively because of the low data quality and complex network conditions. For the purpose of solving this problem and improving the suitability of state estimation, the classical logic function is reconstructed to find the generating function which is naturally suitable for the high-quality numerical iteration of state estimation on the image. Then, this function is considered as the step size control factor, and the step size factor can be adjusted intelligently by controlling parameters. After that, the weight factor function introdueced to make the algorithm perform variable weight operation in the iterative process and the influence from the bad data can be reduced then. Compared with the analytical method in terms of an adjustable step size, this method has the characteristics of low coupling in model and strong portability. Consider an IEEE30 node system as example. It is found that the proposed algorithm is superior to the traditional fixed step size method in terms of numerical stability, computation efficiency, and estimated quality when the measurement has bad data and the power system is under quasi ill-conditioned and ill-conditioned.

    参考文献
    [1] SCHWEPPE F C,WILDES J.Power system static-state estimation,Part I,II,III[J].IEEE Transactions on Power Apparatus and Systems,1970,89(1):120-135.
    [2] MONTICELLI A.State estimation in electric power systems[M].New York:Springer Science,1999:15.
    [3] 范翔,严正,赵文恺,等.提高电力系统潮流计算收敛性方法的比较分析[J].电力系统及其自动化学报,2015,27(11):57-63.FAN Xiang,YAN Zheng,ZHAO Wenkai,et al.Comparative analysis among prevailing methods for enhancing convergence of power flow calculation[J].Proceedings of the CSU-EPSA,2015,27(11):57-63.
    [4] TANG K J,DONG S F,SHEN J,et al.A Robust and efficient two-stage algorithm for power flow calculation of large-scale systems[J].IEEE Transactions on Power Systems,2019,34(6):5012-5022.
    [5] 方朝雄.最优乘子法及其在交直流电网潮流计算中的应用[J].中国电力,2018,51(6):107-112.FANG Chaoxiong.Optimal multiplier method and its application in AC/DC power flow calculation[J].Electric Power,2018,51(6):107-112.
    [6] 李知艺,丁剑鹰,吴迪,等.步长优化技术在交直流系统潮流计算中的应用研究[J].华北电力大学学报(自然科学版),2014,41(3):1-9+31.LI Zhiyi,DING Jianying,WU Di,et al.Research on applications of step size optimization techniques in power flow computation of AC/DC systems[J].Journal of North China Electric Power University(Natural Science Edition),2014,41(3):1-9+31.
    [7] 陈子璇,席燕辉,沈银.基于卡尔曼滤波和深度置信网络的复合电能质量扰动分类[J].电力系统保护与控制,2022,50(7):81-90.CHEN Zixuan,XI Yanhui,SHEN Yin.Recognition of multiple power quality disturbances based on a Kalman filter and deep belief network[J].Power System Protection and Control,2022,50(7):81-90.
    [8] MENG J P,DEMARCO C L.Application of optimal multiplier method in weighted least-squares state estimation Part П:Simulation[M].Madison,Wisconsin:University of Wisconsin-Madison,2013:2.
    [9] TATSUNO M,EJIMA Y,IWAMOTO S.Convergence improvement and bad data detection for fast decoupled state estimator using optimal multiplier[J].IEEE Transactions on Power and Energy,2006,126(5):501-508.
    [10] 连鸿松,张少涵,张逸.基于自适应容积卡尔曼滤波算法的电力系统动态谐波状态估计[J].智慧电力,2020,48(6):14-19+53.LIAN Hongsong,ZHANG Shaohan,ZHANG Yi.Dynamic harmonic state estimation of power system based on adaptive volumetric Kalman filter[J].Smart Power,2020,48(6):14-19+53.
    [11] 许婷苇,张海强,林圣,等.基于特征谐波电流积分比值的HVDC整流站保护优化方案[J].电力系统保护与控制,2022,50(7):126-134.XU Tingwei,ZHANG Haiqiang,LIN Sheng,et al.A novel optimization scheme for HVDC rectifier station protection based on an integral ratio of characteristic harmonic current[J].Power System Protection andControl,2022,50(7):126-134.
    [12] 赵雪骞.电力系统抗差状态估计与参数估计方法研究[D].重庆:重庆大学,2012.
    [13] 颜伟,段磊,杨焕燕,等.基于智能电表量测的三相四线制配网抗差估计[J].中国电机工程学报,2015,35(1):60-67.YAN Wei,DUAN Lei,YANG Huanyan,et al.Robust state estimation for three-phase four-wire distribution system using smart meters measurement data[J].Proceedings of the CESS,2015,35(1):60-67.
    [14] 薛安成,张兆阳,毕天姝.基于自适应抗差最小二乘的线路正序参数在线辨识方法[J].电工技术学报,2015,30(8):202-209.XUE Ancheng,ZHANG Zhaoyang,BI Tianshu.Online identification of transmission line positive-sequence parameters based on adaptive robust least squares[J].Transactions of China Electrotechnical Society,2015,30(8):202-209.
    [15] DNIESTRZAEˇSKI P.Logistic function and arcus tangent[J].Mathematical Economics,2008,12(5):67-74.
    [16] WIKIMEDIA COMMONS.Logistic function[EB/OL].https://en.wikipedia.org/wiki/Logistic_function,2020-03-27.
    [17] PARK K S.Condition-based predictive maintenance by multiple logistic function[J].IEEE Transactions on Reliability,1993,42(4):556-559.
    [18] 梁栋,徐丙垠,刘洋,等.基于差分方向行波的脉冲电流电缆故障测距方法[J].电测与仪表,2021,58(7):150-156.LIANG Dong,XU Bingyin,LIU Yang,et al.Impulse current cable fault location method based on differential directional traveling waves[J].Electrical Measurement & Instrumentation,2021,58(7):150-156.
    [19] 吴海江,陈锦荣.配电网电力负荷需求侧响应模型构建[J].电网与清洁能源,2021,37(9):77-82.WU Haijiang,CHEN Jinrong.Construction of the load demand side response model for distribution networks[J].Power System and Clean Energy,2021,37(9):77-82.
    [20] 罗玉春,王毅,闪鑫,等.超大规模电网快速状态估计的实现方法[J].中国电力,2020,53(7):132-140.LUO Yuchun,WANG Yi,SHAN Xin,et al.Implementation method for fast state estimation of super-large power grid[J].Electric Power,2020,53(7):132-140.
    [21] DEMMEL J.Applied numerical linear algebra[M].Philadelphia:Society for Industrial and Applied Mathematics,1997:215.
    [22] PATTERSON J,GIBSON A.Deep learning a practitioner’s approach[M].Sebastopol:O’Reilly Media,Inc.,2017:35.
    [23] 司文荣,傅晨钊,徐鹏,等.基于声学成像及图像处理的变压器铁心松动检测研究[J].高压电器,2021,57(11):180-186.SI Wenrong,FU Chenzhao,XU Peng,et al.Research on loose detection of transformer core based on acoustic imaging and image processing[J].High Voltage Apparatus,2021,57(11):180-186.
    [24] HAYKIN S.Adaptive filter theory(5th Edition)[M].Edinburgh Gate:Pearson Education Limited,2014:485.
    [25] SHAHIDEHPOUR M,WANG Y.Appendix C:IEEE 30 bus system data[EB/OL].https://ieeexplore.ieee.org/document/5225036,2020-04-24.
    [26] ZHENG W Y,WU W C,GOMEZ-EXPOSITO A,et al.Distributed robust bilinear state estimation for power systems with nonlinear measurements[J].IEEE Transactions on Power Systems,2015,32(1):499-509.
    [27] GU G D,LIU Y.Newton-homotopy algorithm of ill-conditioned load-flow[J].Applied Mechanics and Materials,2013,313-314:843-846.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵化时,李胜,林子杰,等.电力系统低模型耦合智能状态估计[J].电力科学与技术学报,2022,37(2):116-128.
ZHAO Huashi, LI Sheng, LIN Zijie, et al. Smart power system state estimation with low model coupling[J]. Journal of Electric Power Science and Technology,2022,37(2):116-128.

复制
分享
文章指标
  • 点击次数:171
  • 下载次数: 1026
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-05-26
文章二维码