考虑需求响应的虚拟电厂双层优化调度
CSTR:
作者:
中图分类号:

TM73

基金项目:

国家自然科学基金(51807114);上海市科委项目(18DZ1203200)


Bi-level optimization dispatch of virtual power plants considering the demand response
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为有效利用需求侧资源和可再生能源发电,从发电侧与需求侧角度出发,定义商业型和技术型虚拟电厂,建立商业层与技术层相结合的虚拟电厂双层优化模型。上层商业型虚拟电厂管理用户负荷,以用户侧收益最大为目标,在制定的分时电价基础上对不同类型的可控负荷进行优化,综合利用价格型和激励型需求响应的调度作用。下层技术型虚拟电厂管理风光燃储联合发电系统,在满足上层调度结果的基础上,以分布式电源出力成本最小为目标进行优化,同时兼顾需求侧和发电侧的利益。最后,利用CPLEX求解器得出虚拟电厂的调度策略,对比不同场景下虚拟电厂的经济效益,验证所建立模型的合理性。

    Abstract:

    In order to effectively utilize demand-side resources and renewable energy power generation, the virtual power plants can be defined as commercial virtual power plants and technical virtual power plants according to their different characteristics and then a bi-layer optimization model of virtual power plants combining the commercial layer and the technical layer is established on the basis. Among them, the upper-level commercial virtual power plant manages user loads with the goal of maximizing user-side benefits. Different types of controllable loads is optimized on the basis of the established time-of-use electricity price and the scheduling role of price-based and incentive-based demand response is comprehensively utilized. Meanwhile, the technology-based virtual power plant would manage the wind-photovoltaic-fuel-storage combined power system and the lower-level objective is minimizing the output cost of distributed power sources on the basis of satisfying the upper-level scheduling results. The proposed method takes into account the benefits for both demand side and power generation side simultaneously. Finally, the dispatching strategy of the virtual power plant is obtained by applying the CPLEX solver. The economic benefits of the virtual power plant in different scenarios are compared to verify the rationality of the established model.

    参考文献
    [1] 刘吉臻,李明扬,房方,等.虚拟发电厂研究综述[J].中国电机工程学报,2014,34(29):5103-5111.LIU Jizhen,LI Mingyang,FANG Fang,et al.Review on virtual power plants[J].Proceedings of the CSEE,2014,34(29):5103-5111.
    [2] 刘新元,程雪婷,薄利明,等.考虑源荷协调的含储热光热电站和风电系统的日前-日内调度策略[J].中国电力,2021,54(8):144-153.LIU Xinyuan,CHENG Xueting,BO Liming,et al.Day-ahead and intra-day scheduling strategy of concentrated solar power station with thermal energy storage and wind farm considering coordination between generation and load[J].Electric Power,2021,54(8):144-153.
    [3] 黄剑平,陈皓勇,林镇佳,等.需求侧响应背景下分时电价研究与实践综述[J].电力系统保护与控制,2021,49(9):178-187.HUANG Jianping,CHEN Haoyong,LIN Zhenjia,et al.A summary of time-of-use research and practice in a demand response environment[J].Power System Protection and Control,2021,49(9):178-187.
    [4] 陈厚合,王子璇,张儒峰,等.含虚拟电厂的风电并网系统分布式优化调度建模[J].中国电机工程学报,2019,39(9):2615-2624.CHEN Houhe,WANG Zixuan,ZHANG Rufeng,et al.Decentralized optimal dispatching modeling for wind power integrated power system with virtual power plant[J].Proceedings of the CSEE,2019,39(9):2615-2624.
    [5] 徐辉,焦扬,蒲雷,等.计及不确定性和需求响应的风光燃储集成虚拟电厂随机调度优化模型[J].电网技术,2017,41(11):3590-3597.XU Hui,JIAO Yang,PU Lei,et al.Stochastic scheduling optimization model for virtual power plant of integrated wind-photovoltaic-energy storage system considering uncertainty and demand response[J].Power System Technology,2017,41(11):3590-3597.
    [6] 罗翼婷,杨洪明,牛犇,等.考虑多风能预测场景的虚拟电厂日内滚动柔性优化调度方法[J].电力系统保护与控制,2020,48(2):51-59.LUO Yiting,YANG Hongming,NIU Ben,et al.Day-ahead flexible rolling optimization dispatch of virtual power plant based on multi-wind forecasting results[J].Power System Protection and Control,2020,48(2):51-59.
    [7] 袁桂丽,王宝源.含电动汽车的虚拟电厂经济性优化调度[J].太阳能学报,2019,40(8):2395-2404.YUAN Guili,WANG Baoyuan.Economic optimal dispatch of virtual power plant with electric vehicles[J].Acta Energiae Solaris Sinica,2019,40(8):2395-2404.
    [8] 刘铠诚,何桂雄,郭炳庆.考虑电价碳价及风功率不确定性的风—火虚拟电厂运行优化策略[J].电力科学与技术学报,2018,33(3):99-105.LIU Kaicheng,HE Guixiong,GUO Bingqing.Optimal strategy for wind-fire virtual power plant considering uncertainties of wind power fluctuations and price randomness of electricity and carbon[J].Journal of Electric Power Science and Technology,2018,33(3):99-105.
    [9] 顾伟,任佳依,高君,等.含分布式电源和可调负荷的售电公司优化调度模型[J].电力系统自动化,2017,41(14):37-44.GU Wei,REN Jiayi,GAO Jun,et al.Optimal dispatching model of electricity retailers considering distributed generator and adjustable load[J].Automation of Electric Power Systems,2017,41(14):37-44.
    [10] 张涛,王成,王凌云,等.考虑虚拟电厂参与的售电公司双层优化调度模型[J].电网技术,2019,43(3):952-960.ZHANG Tao,WANG Cheng,WANG Lingyun,et al.A bi-level optimal dispatching model of electricity retailers integrated with VPPs[J].Power System Technology,2019,43(3):952-960.
    [11] BEHBOODI S,CHASSIN D P,DJILALI N,et al.Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets[J].Applied Energy,2018,210:1310-1320.
    [12] 王明松.风—光—蓄—火联合发电系统的两阶段优化调度策略[J].电网与清洁能源,2020,36(5):75-82.WANG Mingsong.Two-stage optimal dispatching strategy of the wind-solar-pumped storage-thermal combined system[J].Power System and Clean Energy,2020,36(5):75-82.
    [13] 罗翼婷,杨洪明,牛犇,等.考虑多风能预测场景的虚拟电厂日内滚动柔性优化调度方法[J].电力系统保护与控制,2020,48(2):51-59.LUO Yiting,YANG Hongming,NIU Ben,et al.Day-ahead flexible rolling optimization dispatch of virtual power plant based on multi-wind forecasting results[J].Power System Protection and Control,2020,48(2):51-59.
    [14] 徐蕙,陈平,李海涛,等.MPSR-MKSVM电力负荷预测综合优化策略[J].电测与仪表,2022,59(1):77-83.XU Hui,CHEN Ping,LI Haitao,et al.Comprehensive optimization strategy of power load forecasting based on MPSR-MKSVM[J].Electrical Measurement & Instrumentation,2022,59(1):77-83.
    [15] 刘蓉晖,李子林,杨秀,等.考虑用户侧柔性负荷的社区综合能源系统日前优化调度[J].太阳能学报,2019,40(10):2842-2850.LIU Ronghui,LI Zilin,YANG Xiu,et al.Optimal dispatch of community integrated energy system considering user-side flexible load[J].Acta Energiae Solaris Sinica,2019,40(10):2842-2850.
    [16] KULMALA1 A,ALONSO M,REPO1 H,et al.Hierarchical and distributed control concept for distribution network congestion management[J].IET Generation,Transmission & Distribution,2016,11(3):665-675.
    [17] 李正浩,李孟凡.基于深度学习的智能型负荷预测方法的研究[J].智慧电力,2020,48(10):78-85+112.LI Zhenghao,LI Mengfan.Smart load forecasting method based on deep learning[J].Smart Power,2020,48(10):78-85+112.
    [18] 黄景光,陈波,林湘宁,等.基于乌鸦搜索算法的孤岛微网多目标优化调度[J].高压电器,2020,56(1):162-168.HUANG Jingguang,CHEN Bo,LIN Xiangning,et al.Multi-objective optimal operation of islanded microgrid based on crow search algorithm[J].High Voltage Apparatus,2020,56(1):162-168.
    相似文献
    引证文献
引用本文

杨秀,杜楠楠,孙改平,等.考虑需求响应的虚拟电厂双层优化调度[J].电力科学与技术学报,2022,37(2):137-146.
YANG Xiu, DU Nannan, SUN Gaiping, et al. Bi-level optimization dispatch of virtual power plants considering the demand response[J]. Journal of Electric Power Science and Technology,2022,37(2):137-146.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2022-05-26
文章二维码