基于邻域粗糙集与AMPOS-ELM的变压器DGA故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM863

基金项目:

国网宁夏电力有限公司电力科学研究院创新创效项目(SGNXDK00PJJS2000161)


Atransformer DGA fault diagnosis approachbased on neighborhood rough set and AMPSO-ELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于DGA数据的智能变压器故障诊断方法准确率易受输入特征影响以及极限学习机参数选择困难的问题,提出基于邻域粗糙集与自适应变异粒子群极限学习机算法的变压器故障诊断方法。首先,结合各DGA故障诊断标准建立变压器故障初始特征集,采用邻域粗糙集分析后获得属性重要度高的关键特征指标;其次,针对粒子群算法优化极限学习机参数时容易早熟、陷入局部最优的缺陷,提出带有早熟自检变异机制的改进粒子群算法优化极限学习机;最后,通过变压器DGA数据实例诊断,将之与IEC三比值法以及不同组合的极限学习机诊断性能进行比较,表明所提方法诊断精度更高。

    Abstract:

    The accuracy of the intelligent transformer fault diagnosis method based on the DGA data is easily affected by the input characteristics, and the parametersof the extreme learning machine model is difficult to select. Thus, a transformer fault diagnosis method based on the neighborhood rough set and the adaptive mutation particle swarm extreme learning machine algorithm is proposed. Firstly, the initial feature set of transformer faults is established based on the various DGA fault diagnosis standards, and the key feature indicators with higherimportance according to the neighborhood rough set analysis.Secondly, when optimizing the parameters of the extreme learning machine on the basis ofthe particle swarm algorithm, it is easy to be premature and fall into the local maximum. Hence, an improved particle swarm optimization algorithm with premature self-check mutation mechanism is proposed.Finally, through a case study, the proposed methodis compared with the IEC three-ratio method and the different combinations of extreme learning machines,which verifies that the better diagnosis accuracy of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

周秀,怡恺,李刚,等.基于邻域粗糙集与AMPOS-ELM的变压器DGA故障诊断[J].电力科学与技术学报,2022,37(3):157-164.
ZHOU Xiu, YI Kai, LI Gang, et al. Atransformer DGA fault diagnosis approachbased on neighborhood rough set and AMPSO-ELM[J]. Journal of Electric Power Science and Technology,2022,37(3):157-164.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-24
  • 出版日期:
文章二维码