基于邻域粗糙集与AMPOS-ELM的变压器DGA故障诊断
CSTR:
作者:
中图分类号:

TM863

基金项目:

国网宁夏电力有限公司电力科学研究院创新创效项目(SGNXDK00PJJS2000161)


Atransformer DGA fault diagnosis approachbased on neighborhood rough set and AMPSO-ELM
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    基于DGA数据的智能变压器故障诊断方法准确率易受输入特征影响以及极限学习机参数选择困难的问题,提出基于邻域粗糙集与自适应变异粒子群极限学习机算法的变压器故障诊断方法。首先,结合各DGA故障诊断标准建立变压器故障初始特征集,采用邻域粗糙集分析后获得属性重要度高的关键特征指标;其次,针对粒子群算法优化极限学习机参数时容易早熟、陷入局部最优的缺陷,提出带有早熟自检变异机制的改进粒子群算法优化极限学习机;最后,通过变压器DGA数据实例诊断,将之与IEC三比值法以及不同组合的极限学习机诊断性能进行比较,表明所提方法诊断精度更高。

    Abstract:

    The accuracy of the intelligent transformer fault diagnosis method based on the DGA data is easily affected by the input characteristics, and the parametersof the extreme learning machine model is difficult to select. Thus, a transformer fault diagnosis method based on the neighborhood rough set and the adaptive mutation particle swarm extreme learning machine algorithm is proposed. Firstly, the initial feature set of transformer faults is established based on the various DGA fault diagnosis standards, and the key feature indicators with higherimportance according to the neighborhood rough set analysis.Secondly, when optimizing the parameters of the extreme learning machine on the basis ofthe particle swarm algorithm, it is easy to be premature and fall into the local maximum. Hence, an improved particle swarm optimization algorithm with premature self-check mutation mechanism is proposed.Finally, through a case study, the proposed methodis compared with the IEC three-ratio method and the different combinations of extreme learning machines,which verifies that the better diagnosis accuracy of the proposed method.

    参考文献
    [1] 梁文武,朱维钧,李辉等.基于粗糙集的智能变电站保护设备仿生故障诊断方法[J].电力系统保护与控制,2021,49(21):132-140.LIANG Wenwu,ZHU Weijun,LI Hui,et al.A rough set-based bio-inspired fault diagnosis method for smart substation protection equipment[J]Power System Protection and Control,2021,49(21):132-140.
    [2] 夏玉剑,李敏,向天堂,等.基于SOM的变压器绕组和铁芯故障诊断[J].电力科学与技术学报,2018,33(2):129-134.XIA Yujian,LI Min,XIANG Tiantang,et al.Fault diagnosis of transformer winding and core based on SOM[J].Journal of Electric Power Science and Technology,2018,33(2):129-134.
    [3] 党东升,张树永,葛鹏江,等.基于改进量子粒子群优化支持向量机的变压器故障诊断方法[J].电力科学与技术学报,2019,34(3):108-113.DANG Dongsheng,ZHANG Shuyong,GE Pengjiang,et al.Transformer fault diagnosis method based on support vector machine optimized by improved quantum-behaved particle swarm optimization[J].Journal of Electric Power Science and Technology,2019,34(3):108-113.
    [4] YANG F M,LIU C,SUN Y,et al.Fault prediction based on dissolved gas concentration from insulating oil in power transformer using neural network[J].Applied Mechanics and Materials,2012,441:312-317.
    [5] 黄新波,王享,田毅,等.基于PSO-ELM融合动态加权AdaBoost的变压器故障诊断方法[J].高压电器,2020,56(5):39-46.HUANG Xinbo,WANG Xiang,TIAN Yi,et al.Transformer fault diagnosis algorithm based on PSO-ELM fusion dynamically weighted adaBoost[J].High Voltage Apparatus,2020,56(5):39-46.
    [6] MALIK H,MISHRA S.Extreme Learning Machine Based Fault Diagnosis of Power Transformer Using IEC TC10 And Its Related Data[C]//2015 Annual IEEE India Conference(INDICON),New Delhi,India:IEEE,2015,1-5.
    [7] 王学磊,李庆民,杨芮,等.基于油色谱分析的变压器复合绝缘缺陷多指标综合权重评估方法[J].高电压技术,2015,41(11):3836-3842.WANG Xuelei,LI Qingmin,YANG Rui,et al.Multi-index and comprehensive weighted assessment method for transformer compound insulation defects based on dissolved gases analysis[J].High Voltage Engineering,2015,41(11):3836-3842.
    [8] 黄新波,李文君子,宋桐,等.采用遗传算法优化装袋分类回归树组合算法的变压器故障诊断[J].高电压技术,2016,42(5):1617-1623.HUANG Xinbo,LI Wenjunzi,SONG Tong,et al.Application of bagging-CART algorithm optimized by genetic algorithm in transformer fault diagnosis[J].High Voltage Engineering,2016,42(5):1617-1623.
    [9] 王雪,韩韬.基于贝叶斯优化随机森林的变压器故障诊断[J].电测与仪表,2021,58(6):167-173.WANG Xue,HAN Tao.Transformer fault diagnosis based on Bayesian optimized random forest[J].Electrical Measurement & Instrumentation,2021,58(6):167-173.
    [10] 梁智,孙国强,卫志农,等.基于变量选择与高斯过程回归的短期负荷预测[J].电力建设,2017,38(2):122-128.LIANG Zhi,SUN Guoqiang,WEI Zhinong,et al.Short-term load forecasting based on variable selection and gaussian process regression[J].Electric Power Construction,2017,38(2):122-128.
    [11] 陈小青,刘觉民,黄英伟,等.采用改进人工鱼群优化粗糙集算法的变压器故障诊断[J].高电压技术,2012,38(6):1403-1409.CHEN Xiaoqing,LIU Juemin,HUANG Yingwei,et al.Transformer fault diagnosis using improved artificial fish swarm with rough set algorithm[J].High Voltage Engineering,2012,38(6):1403-1409.
    [12] 刘胜军,孙志鹏,沈辰,等.基于振动频谱分析和总谐波畸变率的电力变压器故障诊断方法研究[J].电网与清洁能源,2021,37(3):86-91.LIU Shengjun,SUN Zhipeng,SHEN Chen,et al.Research on fault diagnosis of power transformers based on spectral analysis of vibration signals and total harmonic distortion[J].Power System and Clean Energy,2021,37(3):86-91.
    [13] 周光宇,马松龄.基于机器学习与DGA的变压器故障诊断及定位研究[J].高压电器,2020,56(6):262-268.ZHOU Guangyu,MA Songling.Study of transformer fault diagnosis and location based on machine learning and DGA[J].High Voltage Apparatus,2020,56(6):262-268.
    [14] HU Q,YU D,XIE Z.Neighborhood classifiers[J].Expert Systems with Applications,2008,34(2):866-876.
    [15] 周艳真,查显煜,兰健,等.基于数据增强和深度残差网络的电力系统暂态稳定预测[J].中国电力,2020,53(1):22-31.ZHOU Yanzhen,CHA Xanyu,LAN Jian,et al.Transient stability prediction of power systems based on deep residual network and data augmentation[J].Electric Power,2020,53(1):22-31.
    [16] 蔡国伟,张启蒙,杨德友,等.基于改进深度置信网络的电力系统暂态稳定评估研究[J].智慧电力,2020,48(3):61-68.CAI Guowei,ZHANG Qimeng,YANG Deyou,et al.Research on power system transient stability assessment based on improved deep belief network[J].Smart Power,2020,48(3):61-68.
    [17] CHENG R,JIN Y.A social learning particle swarm optimization algorithm for scalable optimization[J].Information sciences,2015,291:43-60.
    [18] KIM S W,KIM S J,SEO H D,et al.New methods of DGA diagnosis using IEC TC 10 and related databases part 1:application of gas-ratio combinations[J].IEEE Transactions on Dielectrics & Electrical Insulation,2013,20(2):685-690.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周秀,怡恺,李刚,等.基于邻域粗糙集与AMPOS-ELM的变压器DGA故障诊断[J].电力科学与技术学报,2022,37(3):157-164.
ZHOU Xiu, YI Kai, LI Gang, et al. Atransformer DGA fault diagnosis approachbased on neighborhood rough set and AMPSO-ELM[J]. Journal of Electric Power Science and Technology,2022,37(3):157-164.

复制
分享
文章指标
  • 点击次数:150
  • 下载次数: 554
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-07-24
文章二维码