基于改进关联规则挖掘的变压器油中溶解气体分析模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM407

基金项目:

湖南省重点实验室开放基金(2020ZNDL006)


Evaluation model of the power transformer dissolved gas analysis based on the enhanced association rule miningalgorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    关联规则挖掘算法常用于基于油中溶解气体分析的变压器故障诊断中。为进一步提升诊断效果,提出一种基于改进关联规则挖掘模型的变压器故障诊断方法。首先,构建可调整的状态重要度评估标准计算方式,能够适应不同输入特征并将其中的罕见高危数据纳入分析,从而有效应对现实应用过程中可能出现的极端状况;其次,直接基于输入特征量导致的故障风险而非特征量的数据占比或出现频率求解相应故障风险权重,能够更加准确地衡量各特征量所带来的影响;最后应用Relim算法进行关联规则挖掘,从而改善挖掘效率。实例仿真结果表明,所提出方法相较采用固定重要度评估标准计算方式、传统风险权重求解方法以及Apriori关联规则挖掘算法的故障诊断方法,具有更好的诊断准确率、实际可行性以及运算效率。

    Abstract:

    Association rule mining methods are commonly utilized to analyze the dissolved gas which is applied to diagnose the power transformer fault events. For the purpose of improving the performance, this paper proposes a diagnosis method for power transformer fault events based on the enhanced association rule mining algorithm. Firstly, the conditional significance measurements which can be adapted for different input features are established. Thus the rarely distributed but risky data can be incorporated in analysis, and all the potential circumstances in reality can be considered. Next, the corresponding risk weights of input data are generated through their probability of causing a fault rather than their statistical distribution. Therefore, the impact of each input will be measured more precisely. Finally, Relim algorithm is applied to raise the efficiency of mining. The experimentalstudy shows that the proposed method is more pinpoint, realizable and efficient compared with the methods with the fixed significance measurements, the conventional technique to calculatethe risk weight, and Apriori algorithm.

    参考文献
    相似文献
    引证文献
引用本文

邓佳乐,孙辰昊,胡博,等.基于改进关联规则挖掘的变压器油中溶解气体分析模型[J].电力科学与技术学报,2022,37(3):165-172.
DENG Jiale, SUN Chenhao, HU Bo, et al. Evaluation model of the power transformer dissolved gas analysis based on the enhanced association rule miningalgorithm[J]. Journal of Electric Power Science and Technology,2022,37(3):165-172.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-24
  • 出版日期:
文章二维码