基于语义信息分块的高像素导线缺陷目标识别
作者:
作者单位:

作者简介:

通讯作者:

廖如超(1990-),男,硕士,工程师,主要从事电网智能巡检技术研究;E-mail:525492887@qq.com

中图分类号:

TM755

基金项目:

中国南方电网有限责任公司科技项目(GDKJXM20184731)


Research on defect target identification of high pixel wire image based on semantic information patching
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输电导线作为架空输电线路重要的部件,在巡检过程中如果被发现存在缺陷可能导致重大电力事故的发生。对高像素无人机巡检图像进行导线缺陷识别所需计算量大且缺陷目标区域范围小,若在无人机巡检过程中实现实时较高精度的识别能够大大加快巡检效率。本文提出一种利用无人机搭载板载计算机实时处理高清摄像头采集的高分辨率导线图像识别导线缺陷的方法。该方法首先采用语义信息分块将导线图像降采样处理,然后利用分割网络获取低像素导线分割区域并对其网格化,裁剪出多个导线区域,将导线区域以降采样比例映射回高像素原图像后再裁剪出多个导线高分辨率导线区域,批次输入yolov3网络进行导线缺陷识别,最后根据输入的高精度关注区域在原图像的相对位置获得缺陷识别目标区域。实验结果表明,提出的识别方法可以实现对相机采集的高分辨率导线图像进行高帧率的缺陷实时识别,为无人机智能化巡检提供新的思路。

    Abstract:

    As an important component of overhead transmission lines, transmission wires may cause major power accidents if they are found to be defective during the inspection process. The identification of wire defects in high-pixel UAV inspection images requires a large amount of calculation and the target area of defects is small. If real-time high-precision identification is realized in the UAV inspection process, the inspection efficiency can be greatly accelerated. This paper proposes a method to identify wire defects by using the on-board computer of UAV to process high-resolution wire images collected by high-definition cameras in real time. The method firstly uses semantic information patching to sub-sample the wire image, and then uses the segmentation network to obtain the low-pixel wire segmentation areas and mesh them. Multiple wire areas are cropped out and mapped back to the high-pixel original image at a down-sampling ratio. Then a number of high-resolution wire areas are cut out and enter the yolov3 network in batch for wire defect recognition. Finally the defect recognition target area is produced according to the input high-precision attention area in the relative position of the original image. The experimental results show that the identification method proposed in this paper can realize the real-time identification of high frame rate defects in the high-resolution wire images collected by the camera in the process of UAV patrolling, which provides a new idea for the intelligent patrolling of UAV.

    参考文献
    相似文献
    引证文献
引用本文

廖如超,张英,廖建东,等.基于语义信息分块的高像素导线缺陷目标识别[J].电力科学与技术学报,2022,37(3):206-212.
LIAO Ruchao, ZHANG Ying, LIAO Jiandong, et al. Research on defect target identification of high pixel wire image based on semantic information patching[J]. Journal of Electric Power Science and Technology,2022,37(3):206-212.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-24
  • 出版日期:
文章二维码