基于停车需求的电动汽车移动储能多目标充放电协调控制
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM73

基金项目:

上海绿色能源并网工程技术研究中心资助(13DZ2251900)


Multi-objective coordinated control of charging and discharging for mobile energy storage of electric vehicles based on parking demand
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电动汽车在不同类别规划用地间的移动及停放具有一定规律,基于居民、工业、商业区不同的停车充放电需求建立电动汽车移动储能模型。为更好地体现电动汽车移动储能在负荷管理上的优势,综合考虑电网、车主、停车充放电场所这三方,以负荷标准差最小和经济利益最大为目标构建电动汽车充放电的多目标优化模型。通过快速非支配排序遗传算法(NSGA-II)解得帕累托(Pareto)最优前沿面,采用模糊隶属度法求折中最优解。最后,对包含3 个居民区、1个工业区、1个商业区的电动汽车移动储能充放电案例进行仿真,验证所提模型及策略的有效性。

    Abstract:

    The movement and parking of electric vehicles between different types of planned land have regular patterns. Based on the different charging and discharging needs of residential areas, industrial areas, and commercial areas, a mobile energy storage model for electric vehicles has been established. In addition, in order to better reflect the advantages of mobile energy storage for electric vehicles in load management, the power grid, vehicle owners and charging/discharging places are comprehensively considered, and a multi-objective optimization model is constructed with the goal of minimizing the load standard deviation and maximizing economic benefits. The Pareto optimal front surface is obtained through the fast non-dominated sorting genetic algorithm (NSGA-II), and the fuzzy membership method is used to find the compromise optimal solution. Finally, a simulation of the charging and discharging case of mobile energy storage for electric vehicles consisting of three residential areas, one industrial area and one commercial area is carried out to verify the effectiveness of the proposed model and strategy.

    参考文献
    相似文献
    引证文献
引用本文

杨钰君,于艾清,丁丽青.基于停车需求的电动汽车移动储能多目标充放电协调控制[J].电力科学与技术学报,2022,37(4):65-77.
Yang Yujun, Yu Aiqing, Ding Liqing. Multi-objective coordinated control of charging and discharging for mobile energy storage of electric vehicles based on parking demand[J]. Journal of Electric Power Science and Technology,2022,37(4):65-77.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-23
  • 出版日期:
文章二维码