基于多维状态空间MCMC充电负荷预测的充电站规划
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM73;U491.8

基金项目:

国家自然科学基金(51807114);上海市科委项目(18DZ1203200)


Charging station planning for electric vehicle based on charging load forecast by MCMC method in multi-dimensional state space
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电动汽车充电站的规划布局与电动汽车充电负荷的出行特性密切相关,因而合理预测充电负荷需求才能得到有效的充电站规划结果。首先,定义多个维度下的电动汽车充电负荷状态空间,在此基础上建立充电负荷状态转移概率矩阵,进而提出一种基于电动汽车多维状态空间的马尔科夫链蒙特卡洛(MCMC)负荷预测模型,结合车辆实际出行实时样本数据得到充电负荷时空预测分布;其次,建立考虑企业建站经济效益及用户满意度的双层规划模型,通过变权重粒子群算法进行求解,得到充电站的最优站址和规模;最后,通过算例仿真验证所提方法的合理性和有效性。

    Abstract:

    The location and capacity planning of electric vehicle charging stations are closely related to the travel characteristics of electric vehicle loads. Therefore, only when the charging load demand is reasonably predicted can an effective charging station planning result be obtained. To this end, this paper firstly defines the state space of electric vehicle charging load in multiple dimensions, and the probability matrix of state transfer of charging load can be established consequently. Furthermore, a Markov Chain Monte Carlo (MCMC) load forecasting model based on the multi-dimensional state space of electric vehicles travelling is proposed, the spatial-temporal prediction distribution of charging load is obtained by combining the real-time sample data. Then, a two-level programming model considering the economic benefits and user satisfaction of enterprise station construction is established. With the variable weight particle swarm optimization, the optimal site and scale of charging station can be determined. Finally, the simulation results can demonstrate the rationality and effectiveness of the model and method.

    参考文献
    相似文献
    引证文献
引用本文

张美霞,叶睿琦,杨秀,等.基于多维状态空间MCMC充电负荷预测的充电站规划[J].电力科学与技术学报,2022,37(4):78-87.
Zhang Meixia, Ye Ruiqi, Yang Xiu, et al. Charging station planning for electric vehicle based on charging load forecast by MCMC method in multi-dimensional state space[J]. Journal of Electric Power Science and Technology,2022,37(4):78-87.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-23
  • 出版日期:
文章二维码