基于神经网络和温度特性曲线的电缆故障率估计
CSTR:
作者:
通讯作者:

何宁辉(1986-),男,博士,高级工程师,主要从事电力设备状态监测技术研究;E-mail:232464433@qq.com

中图分类号:

TM93

基金项目:

宁夏回族自治区重点研发计划(2020YCYF0112)


Cable failure rate estimation based on neural network and temperature characteristic curve
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    电流产生的热效应是影响电缆使用寿命和老化故障的主要原因,建立电缆温度特性模型极其重要。电力企业应能够正确估计配电网电缆的相关老化故障率,然而现有的电缆故障率估计是在额定温度下进行计算的,并没有考虑实际运行中温度变化的影响。采用一种基于人工神经网络的方法估计电缆最高温度,该温度变化满足一定的日负荷曲线。人工神经网络只需4个容易获取的输入变量,利用电缆绝缘组合电热寿命模型,对预测温度曲线各阶段的寿命损失进行估计。最后,利用该寿命模型和概率失效模型预测未来一段时间内电力电缆的故障率。结果表明,失效概率的估计与实际结果一致性高,说明所估算的电缆温度三级逐步变化曲线能够真实反映电缆瞬态温度变化。

    Abstract:

    The thermal effect of current is the main cause of cable service life and aging failure. It is very important to establish the cable temperature characteristic model. Power enterprises should be able to correctly estimate the related aging failure rate of distribution network cables. However, the existing cable failure rate estimations are calculated at the rated temperature and do not take into account the effect of actual operating temperature changes. Therefore, a method based on artificial neural network is used to estimate the maximum temperature of the cable. This temperature variation is in good agreement with the daily load curve in some extent. The artificial neural network only needs four easily obtained input variables, and the life loss at each stage of the predicted temperature curve is estimated by using the combined electric heating life model of cable insulation. Finally, the life model and probability failure model are used to predict the failure rate of power cables in the future. The results show that the estimation of failure probability is in good agreement with the actual results, which indicates that the three-stage gradual change curve of cable temperature can truly reflect the cable transient temperature change.

    参考文献
    [1] 蔡霁霖,郝丽丽,张柯琪.含可再生能源电力系统可靠性评估的非参数重要性分层抽样法[J].电力系统自动化,2022,46(7):104-115.CAI Jilin,HAO Lili,ZHANG Keqi.Non-parametric stratified importance sampling method for reliability evaluation of power system with renewable energy[J].Automation of Electric Power Systems,2022,46(7):104-115.
    [2] 姜臻,于力,黄彦璐,等.考虑分布式电源“即插即用”的配电网临界条件计算方法[J].中国电力,2020,53(4):22-31.JIANG Zhen,YU Li,HUANG Yanlu,et al.Calculation method for critical conditions of distribution network considering distributed generation "plug and play"[J].Electric Power,2020,53(4):22-31.
    [3] 李根,王航,周文俊,等.波纹护套高压XLPE电缆缓冲层空气间隙电场分布[J].高压电器,2021,57(10):167-175.LI Gen,WANG Hang,ZHOU Wenjun,et al.Electric field distribution in air gap between the buffer layer and corrugated metallic sheath of HV XLPE cable[J].High Voltage Apparatus,2021,57(10):167-175.
    [4] 冯晨.基于绝缘电阻的电缆用乙丙橡胶绝缘表面电痕故障诊断方法研究[D].太原:太原理工大学,2016.
    [5] 南保峰,卢雨欣,孙廷玺,等.基于三芯电缆自取能技术的热状态评估系统研制[J].智慧电力,2020,48(11):103-107.NAN Baofeng,LU Yuxin,SUN Tingxi,et al.Development of thermal condition evaluation system based on energy self-harvesting technique for three-core power cables[J].Smart Power,2020,48(11):103-107.
    [6] ANDRZEJ C,BARTOSZ S,MAREK K.Economic optimization of an underground power cable installation[J].IEEE Transactions on Power Delivery,2018,33(3):1124-1133.
    [7] LI Z G,WU W C,ZHANG B M,et al.Dynamic economic dispatch using lagrangian relaxation with multiplier updates based on a quasi-newton method[J].IEEE Transactions on Power Systems,2013,28(4):4516-4527.
    [8] GILL S,KOCKAR I,AULT G W.Dynamic optimal power flow for active distribution networks[J].IEEE Transactions on Power Systems,2014,29(1):121-131.
    [9] 颜云松,孙宁,张楠,等.基于预防检修周期优化的电网稳定控制系统失效风险评估[J].电力系统保护与控制,2021,49(17):139-146.YAN Yunsong,SUN Ning,ZHANG Nan,et al.Evaluation of unavailability risk of the security and stability control system of power systems based on optimization of the preventive maintenance period[J].Power System Protection and Control,2021,49(17):139-146.
    [10] 傅晨钊,李红雷,张振鹏,等.土壤直埋单根电缆暂态温升热路模型的验证试验[J].高压电器,2021,57(2):159-165.FU Chenzhao,LI Honglei,ZHANG Zhenpeng,et al.Verification test for thermal circuit model of transient temperature rise of soil direct buried single cable[J].High Voltage Apparatus,2021,57(2):159-165.
    [11] 官国飞,宋庆武,刘恢,等.基于边缘计算的配网管理和运维体系研究[J].电网与清洁能源,2020,36(10):90-96.GUAN Guofei,SONG Qingwu,LIU Hui,et al.Research on distribution network management and operation and maintenance system based on edge computing[J].Power System and Clean Energy,2020,36(10):90-96.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何宁辉,周秀,马波,等.基于神经网络和温度特性曲线的电缆故障率估计[J].电力科学与技术学报,2022,37(4):169-174.
HE Ninghui, ZHOU Xiu, MA Bo, et al. Cable failure rate estimation based on neural network and temperature characteristic curve[J]. Journal of Electric Power Science and Technology,2022,37(4):169-174.

复制
分享
文章指标
  • 点击次数:258
  • 下载次数: 907
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-09-23
文章二维码