基于居民用户用电行为分析的室内大麻种植检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM863

基金项目:

国家自然科学基金(51777015)


Detection of illegal cannabis cultivation based on residential electricity usage behavior analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在欧美大麻合法化风潮影响下,国内开始批量出现室内种植大麻的违法现象。在此背景下,利用室内种植大麻需大量消耗电能且用电行为具有规律性的特点,提出一种基于用电功率频域分布相对熵的室内大麻种植检测方法。首先,分析室内种植大麻的用电需求规律特征,并搭建实验室仿真环境进行种植大麻用电数据的模拟产生; 然后,比对居民用户和室内大麻种植用电行为在时域、频域及具体指标项上的差异,并制定根据用电功率频域分布相对熵等指标识别非法大麻种植的检测流程。基于爱尔兰居民用电数据的测试分析表明,所提方法可有效识别和排除正常居民用户,提高大麻种植异常检测的靶向性。

    Abstract:

    Influenced by the cannabis legalization of USA and EU, the illegal indoor cannabis cultivation got popular in China in recent years. Since indoor cultivation of cannabis has a large number of electricity consumption with distinct feature of electricity usage, A dectecting methed based on the relative entropy of the frequency distribution of electricity usage is developed to identify abnormal users in this paper. Firstly, the electricity usage data of indoor cultivate cannabis is generated from the laboratary simulation. Then, the electricity usage feature difference between the indoor cultivation of cannabis users and the normal residential users are compared in terms of the temporal, frequency domain and specific indicitors. Thereafter, the identification process of obnormal users of indoor cultivation of cannabis is proposed. In the end, a numerical analysis of electricity usage data from Irish residents suggests that the proposed approach can seperate residential users and anomaly users. It is helpful to identify the illegal user with the indoor cultivating cannabis.

    参考文献
    相似文献
    引证文献
引用本文

毛源军,陈超强,舒一飞,等.基于居民用户用电行为分析的室内大麻种植检测[J].电力科学与技术学报,2022,37(4):198-208.
Mao Yuanjun, Chen Chaoqiang, Shu Yifei, et al. Detection of illegal cannabis cultivation based on residential electricity usage behavior analysis[J]. Journal of Electric Power Science and Technology,2022,37(4):198-208.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-23
  • 出版日期:
文章二维码