基于居民用户用电行为分析的室内大麻种植检测
CSTR:
作者:
中图分类号:

TM863

基金项目:

国家自然科学基金(51777015)


Detection of illegal cannabis cultivation based on residential electricity usage behavior analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    在欧美大麻合法化风潮影响下,国内开始批量出现室内种植大麻的违法现象。在此背景下,利用室内种植大麻需大量消耗电能且用电行为具有规律性的特点,提出一种基于用电功率频域分布相对熵的室内大麻种植检测方法。首先,分析室内种植大麻的用电需求规律特征,并搭建实验室仿真环境进行种植大麻用电数据的模拟产生; 然后,比对居民用户和室内大麻种植用电行为在时域、频域及具体指标项上的差异,并制定根据用电功率频域分布相对熵等指标识别非法大麻种植的检测流程。基于爱尔兰居民用电数据的测试分析表明,所提方法可有效识别和排除正常居民用户,提高大麻种植异常检测的靶向性。

    Abstract:

    Influenced by the cannabis legalization of USA and EU, the illegal indoor cannabis cultivation got popular in China in recent years. Since indoor cultivation of cannabis has a large number of electricity consumption with distinct feature of electricity usage, A dectecting methed based on the relative entropy of the frequency distribution of electricity usage is developed to identify abnormal users in this paper. Firstly, the electricity usage data of indoor cultivate cannabis is generated from the laboratary simulation. Then, the electricity usage feature difference between the indoor cultivation of cannabis users and the normal residential users are compared in terms of the temporal, frequency domain and specific indicitors. Thereafter, the identification process of obnormal users of indoor cultivation of cannabis is proposed. In the end, a numerical analysis of electricity usage data from Irish residents suggests that the proposed approach can seperate residential users and anomaly users. It is helpful to identify the illegal user with the indoor cultivating cannabis.

    参考文献
    [1] 乔黎伟,王静怡,郭炜,等.基于随机森林算法的中短期用电量预测[J].电力科学与技术学报,2020,35(2):150-156.QIAO Liwei,WANG Jingyi,GUO Wei,et al.Medium and short-term electricity demand prediction based on random forests algorithm[J].Journal of Electric Power Science and Technology,2020,35(2):150-156.
    [2] 张然,孙晓璐,何仲潇,等.基于异常点检测和改进K-means算法的台区用户相别辨识方法[J].智慧电力,2020,48(1):91-96.ZHANG Ran,SUN Xiaolu,HE Zhongxiao,et al.Phase identification method for distribution area users based on outlier detection and improved K-means algorithm[J].Smart Power,2020,48(1):91-96.
    [3] 严强,李扬,樊友杰,等.基于加权表决集成聚类的居民用电行为回归分析[J].电网技术,2021,45(11):4435-4446.YAN Qiang,LI Yang,FAN Youjie,et al.Regression analysis of residential electricity consumption behavior based on weighted voting ensemble clustering[J].Power System Technology,2021,45(11):4435-4446.
    [4] 张素香,刘建明,赵丙镇,等.基于云计算的居民用电行为分析模型研究[J].电网技术,2013,37(6):1542-1546.ZHANG Suxiang,LIU Jianming,ZHAO Bingzhen,et al.Cloud computing-based analysis on residential electricity consumption behavior[J].Power System Technology,2013,37(6):1542-1546.
    [5] HINO H,SHEN H,MURATA N,et al.A versatile clustering method for electricity consumption pattern analysis in households[J].IEEE Transactions on Smart Grid,2013,4(2):1048-1057.
    [6] 郑思达,梁琪琳,彭鑫霞,等.基于模糊聚类的异常用电行为识别研究[J] 电测与仪表,2020,57(19):40-44.ZHENG Sida,LIANG Qilin,PENG Xinxia,et al.Research on abnormal power consumption behavior identification based on fuzzy clustering[J].Electrical Measurement & Instrumentation,2020,57(19):40-44.
    [7] 张洁,夏飞,袁博,等.基于特征优选策略的居民用电行为聚类方法[J].电力系统自动化,2022,46(6):153-159.ZHANG Jie,XIA Fei,YUAN Bo,et al.Clustering method for residential electricity consumption behavior based on feature optimization strategy[J].Automation of Electric Power Systems,2022,46(6):153-159.
    [8] 王德文,周昉昉.基于无监督极限学习机的用电负荷模式提取[J].电网技术,2018,42(10):3393-3400.WANG Dewen,ZHOU Fangfang.Extraction of electricity consumption load pattern based on unsupervised extreme learning machine[J].Power System Technology,2018,42(10):3393-3400.
    [9] 周明,宋旭帆,涂京,等.基于非侵入式负荷监测的居民用电行为分析[J].电网技术,2018,42(10):3268-3276.ZHOU Ming,SONG Xufan,TU Jing,et al.Residential electricity consumption behavior analysis based on non-intrusive load monitoring[J].Power System Technology,2018,42(10):3268-3276.
    [10] Growace.Growing marijuana indoors[EB/OL].https://growace.com/blog/growing-marijuana-indoors/,2018-08-01.
    [11] 栾文鹏,余贻鑫,王兵.AMI数据分析方法[J].中国电机工程学报,2015,35(1):29-36.LUAN Wenpeng,YU Yixin,WANG Bing.AMI data analytics[J]. Proceeding of the CSEE,2015,35(1):29-36.
    [12] 金晟,苏盛,薛阳,等.数据驱动窃电检测方法综述与低误报率研究展望[J].电力系统自动化,2022,46(1):3-14.JIN Sheng,SU Sheng,XUE Yang,et al.Review on data-driven based electricity theft detection method and research prospect for low false positive rate[J].Automation of Electric Power Systems,2022,46(1):3-14.
    [13] SINGH S K,BOSE R,JOSHI A.Entropy-based electricity theft detection in AMI network[J].IET Cyber-Physical Systems:Theory & Applications,2018,3(2):99-105.
    [14] 袁宏俊,杜康,胡凌云.基于相对熵的最优区间型组合预测模型[J].统计与决策,2020,36(11):26-31.YUAN Hongjun,DU Kang,HU Lingyun.Optimal interval combination forecasting model based on relative entropy[J].Statistics & Decision,2020,36(11):26-31.
    [15] 吴亮,王谊,谢岳,等.基于异常事件故障关联度的电能表可靠性评价方法[J].电测与仪表,2020,57(20):147-152.WU Liang,WANG Yi,XIE Yue,et al.Reliability evaluation method of electricity meter based on fault correlation degree of abnormal event[J].Electrical Measurement & Instrumentation,2020,57(20):147-152.
    [16] 林顺富,田二伟,符杨,等.基于信息熵分段聚合近似和谱聚类的负荷分类方法[J].中国电机工程学报,2017,37(8):2242-2252.LIN Shunfu,TIAN Erwei,FU Yang,et al.Power load classification method based on information entropy piecewise aggregate approximation and spectral clustering[J].Proceeding of the CSEE,2017,37(8):2242-2252.
    [17] 方安然,李旦,张建秋.异常值和未知观测噪声鲁棒的非线性滤波器[J].航空学报,2021,42(7):532-545.FANG Anran,LI Dan,ZHANG Jianqiu.A nonlinear filter robust to outlier and unknown observation noise[J].Acta Aeronautica et Astronautica Sinica,2021,42(7):532-545.
    [18] 袁翔宇,张蓬鹤,熊素琴,等.基于逻辑回归算法的异常用〖JP3〗电辨识方法研究[J].电测与仪表,2021,58(12):81-87.YUAN Xiangyu,ZHANG Penghe,XIONG Suqin,et al.Research on identification method of abnormal power consumption based on logistic regression algorithm[J].Electrical Measurement & Instrumentation,2021,58(12):81-87.
    [19] 李远松,高博,须琳,等.基于差分序列方差与CPS融合的数字变电站数据异常检测方法[J].电网与清洁能源,2021,37(2):30-41.LI Yuansong,GAO Bo,XU Lin,et al.An anomaly detection method for digital substation abnormal data based on fusion of difference sequence variance and CPS[J].Power System and Clean Energy,2021,37(2):30-41.
    [20] 万轶婧,王东海,梁钊明,等.华南暖区暴雨环境参量的统计分析[J].中山大学学报(自然科学版),2020,59(6):51-63.WAN Yijing,WANG Donghai,LIANG Zhaoming,et al.Statistical analysis of the environment parameters of warm-sector heavy rainfall in South China[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(6):51-63.
    [21] 郑宝芬,苏宏业,罗林.无监督特征选择在时间序列数据挖掘中的应用[J].仪器仪表学报,2014,35(4):834-840.ZHENG Baofen,SU Hongye,LUO Lin.Application of unsupervised feature selection in time series data mining[J].Chinese Journal of Scientific Instrument,2014,35(4):834-840.
    [22] 陆俊,朱炎平,彭文昊,等.智能用电用户行为分析特征优选策略[J].电力系统自动化,2017,41(5):58-63+83.LU Jun,ZHU Yanping,PENG Wenhao,et al.Feature selection strategy for electricity consumption behavior analysis in smart grid[J].Automation of Electric Power Systems,2017,41(5):58-63+83.
    [23] 张梦瑶,李磊,刘彦文,等.基于灰色物元的变压器多指标绝缘状态评估方法[J].电力科学与技术学报,2020,35(1):137-143.ZHANGMengyao,LI Lei,LIU Yanwen,et al.Multi-indices insulation condition assessment method for transformer based on grey matter-element method[J].Journal of Electric Power Science and Technology,2020,35(1):137-143.
    相似文献
    引证文献
引用本文

毛源军,陈超强,舒一飞,等.基于居民用户用电行为分析的室内大麻种植检测[J].电力科学与技术学报,2022,37(4):198-208.
Mao Yuanjun, Chen Chaoqiang, Shu Yifei, et al. Detection of illegal cannabis cultivation based on residential electricity usage behavior analysis[J]. Journal of Electric Power Science and Technology,2022,37(4):198-208.

复制
分享
文章指标
  • 点击次数:171
  • 下载次数: 935
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-09-23
文章二维码