考虑动态荷储策略的综合能源系统双层规划模型
CSTR:
作者:
中图分类号:

TM73

基金项目:

国家自然科学基金(51777120);上海市科技创新行动计划(19DZ1205402)


Double-deck planning model of integrated energy system in consideration of dynamic load energy storage strategy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对目前电—气—热综合能源系统动态耦合过程中存在的规划策略单一、调度灵活性差等问题,提出一种考虑动态能量转换(DEC)储能和负荷协同优化策略的双层优化调度模型。该模型上层考虑能量流动态转换与蓄电池、超级电容器和电转气等电气设备全生命周期的的影响,探讨混合储能系统容量配置优化模型和DEC负荷模型。下层根据上层的储能配置建立以运行成本和网络损耗为目标函数的综合能源系统日前优化调度模型,并将调度结果反馈回上层,使DEC负荷参与系统的二次调度以增强调度的灵活性。随后,采用二阶振荡粒子群算法求解上层模型,下层模型在处理非线性方程后采用ε-约束法求解。最后以修改的IEEE 39节点电力系统、比利时20节点天然气系统和6节点热力系统耦合的综合能源系统为例,对4种运行场景下的经济性、可靠性、灵活性进行分析,证明所建模型以及所提算法的合理性和优越性。

    Abstract:

    Most of the existing planning strategies for the electricity gas-heat-integrated energy system are realized by cutting or transferring the load, and the influence of the dynamic coupling process is not considered. Therefore, the scheduling is not flexible enough. Under the background, a two-layer optimal scheduling model that considers the Dynamic Energy Conversion (DEC) energy storage and loads collaborative optimization strategy is proposed in this paper. In the upper layer, the dynamic conversion of energy flow is considered and the whole life cycle impact of the electric facilities, such as batteries, super-capacitors, and electricity to gas, is also concerned. Then the DEC load model is introduced. For the lower layer, based on the configuration of energy storage of the upper layer, an optimal scheduling model of an integrated energy system is established with the operating cost and net loss as the objective function. The scheduling results will be fed back to the upper layer. And then the DEC load can participate in the secondary scheduling and the flexibility of scheduling can be enhanced. In addition, the Second Order Oscillatory Particle Swarm Optimization algorithm is adopted to calculate the solution of the upper model, while the lower model utilizes the ε-constraint method to solve the nonlinear equations. Finally, an Integrated Energy System comprising the modified IEEE 39 Panel Point Power System, the Belgian 20 Panel Points Natural Gas System, and the 6 Panel Points Heat System is analyzed as an example. Four operation scenarios are discussed from the perspectives of economy, reliability, and flexibility to verify the rationality and superiority of the proposed model and algorithm.

    参考文献
    [1] 王宏,闫园,文福拴,等.国内外综合能源系统标准现状与展望[J].电力科学与技术学报,2019,34(3):3-12.WANG Hong,YAN Yuan,WEN Fushuan,et al.Standards associated with integrated energy systems:current situation and research prospect[J].Journal of Electric Power Science and Technology,2019,34(3):3-12.
    [2] 艾芊,郝然.多能互补、 集成优化能源系统关键技术及挑战[J].电力系统自动化,2018,42(4):2-10+46.AI Qian,HAO Ran.Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system[J].Automation of Electric Power Systems,2018,42(4):2-10+46
    [3] 卫志农,张思德,孙国强,等.计及电转气的电—气互联综合能源系统削峰填谷研究[J].中国电机工程学报,2017,37(16):4601-4609+4885.WEI Zhinong,ZHANG Side,SUN Guoqiang,et al.Power-to-gas considered peak load shifting research for integrated electricity and natural-gas energy system[J].Proceedings of the CSEE,2017,37(16):4601-4609+4885.
    [4] 牛启帆,武鹏,张菁,等.考虑电转气的电—气耦合系统协同优化规划方法[J].电力系统自动化,2020,44(3):24-35.NIU Qifan,WU Peng,ZHANG Jing,et al.Collaborative optimal planning method for electricity-gas coupling system considering power to gas[J].Automation of Electric Power Systems,2020,44(3):24-35.
    [5] 许志恒,张勇军,陈泽兴.考虑P2G备用服务的电—气联合网络风电消纳及低碳效益分析[J].电力科学与技术学报,2020,35(3):36-45.XU Zhiheng,ZHANG Yongjun,CHEN Zexing.The benefits on wind power accommodation and low carbon effects of integrated electricity and gas network considering reserve service of P2G facilities[J].Journal of Electric Power Science and Technology,2020,35(3):36-45.
    [6] 张儒峰,姜涛,李国庆,等.考虑电转气消纳风电的电—气综合能源系统双层优化调度[J].中国电机工程学报,2018,38(19):5668-5678+5924.ZHANG Rufeng,JIANG Tao,LI Guoqing,et al.Bi-level optimization dispatch of integrated electricity-natural gas systems considering P2G for wind power accommo-dation[J].Proceedings of the CSEE,2018,38(19):5668-5678+5924.
    [7] 施泉生,丁建勇,刘坤,等.含电、气、热3种储能的微网综合能源系统经济优化运行[J].电力自动化设备,2019,39(8):269-276+293.SHI Quansheng,DING Jianyong,LIU Kun,et al.Economic optimal operation of microgrid integrated energy system with electricity,gas and heat storage[J].Electric Power Automation Equipment,2019,39(8):269-276+293.
    [8] 仇成,李亦农,宋若晨,等.风光联合发电系统的储能容量优化配置方法[J].水电能源科学,2020,38(5):202-206.QIU Cheng,LI Yinong,SONG Ruochen,et al.Optimization configuration of energy storage capacity of wind and photovoltaic generation system[J].Water Resources and Power,2020,38(5):202-206.
    [9] 刘永前,梁超,阎洁,等.风—光电站中储能系统混合最优配置及其经济性研究[J].中国电力,2020,53(12):143-150.LIU Yongqian,LIANG Chao,YAN Jie,et al.Optimal configuration and economic study of hybrid energy storage system in wind and solar power plants[J].Electric Power,2020,53(12):143-150.
    [10] 陆立民,褚国伟,张涛,等.基于改进多目标粒子群算法的微电网储能优化配置[J].电力系统保护与控制,2020,48(15):116-124.LU Limin,CHU Guowei,ZHANG Tao,et al.Optimal configuration of energy storage in a microgrid based on improved multi-objective particle swarm optimization[J].Power System Protection and Control,2020,48(15):116-124.
    [11] 吴悔,林舜江,范官盛.含风电的高维多目标安全约束机组组合问题求解方法[J].电网技术,2021,45(2):542-553.WU Hui,LIN Shunjiang,FAN Guansheng.Solution for multi-objective security constrained unit commitment with wind power[J].Power System Technology,2021,45(2):542-553.
    [12] 黄伟,柳思岐,叶波.考虑源—荷互动的园区综合能源系统站—网协同优化[J].电力系统自动化,2020,44(14):44-61.HUANG Wei,LIU Siqi,YE Bo.Station-network coordination optimization of integrated energy system for park considering source-load interaction[J].Automation of Electric Power Systems,2020,44(14):44-61.
    [13] 徐晨博,薛友,林紫菡,等.计及可转移负荷的电—气综合能源系统多目标优化[J].电力科学与技术学报,2019,34(3):13-23.XU Chen BO,XUE You,LIN Zihan,et al.Multi-objective optimization of an integrated electricity-gas energy system considering transferable loads[J].Journal of Electric Power Science and Technology,2019,34(3):13-23.
    [14] 董帅,王成福,徐士杰,等.计及网络动态特性的电—气—热综合能源系统日前优化调度[J].电力系统自动化,2018,42(13):12-19.DONG Shuai,WANG Chengfu,XU Shijie,et al.Day-ahead optimal scheduling of electricity-gas-heat integrated energy system considering dynamic characteristics of networks[J].Automation of Electric Power Systems,2018,42(13):12-19.
    [15] 王刚,陈先龙,宋艺航,等.计及多能需求的综合能源服务商优化运行策略研究[J].智慧电力,2021,49(2):31-38.WANG Gang,CHEN Xianlong,SONG Yihang,et al.Optimization operation strategy for integrated energy service provider considering multi-energy demand[J].Smart Power,2021,49(2):31-38.
    [16] 张利军,王一铮,陈飞,等.计及能源网络特性的综合能源系统最优协调规划[J].电力科学与技术学报,2020,35(1):3-13.ZHANG Lijun,WANG Yizheng,CHEN Fei,et al.Optimal coordinated planning of an integrated energy system considering characteristics of energy networks[J].Journal of Electric Power Science and Technology,2020,35(1):3-13
    [17] 马一鸣,周夕然,董鹤楠,等.考虑电转气与冷热负荷惯性的综合能源系统优化调度[J].电网与清洁能源,2021,37(8):118-127+138.MA Yiming,ZHOU Xiran,DONG Henan,et al.Optimal dispatch of integrated energy system considering power-to-gas and load inertia[J].Power System and Clean Energy,2021,37(8):118-127+138.
    [18] 杨挺,赵黎媛,刘亚闯,等.基于深度强化学习的综合能源系统动态经济调度[J].电力系统自动化,2021,45(5):39-47.YANG Ting,ZHAO Liyuan,LIU Yachuang,et al.Deep reinforcement learning-based fynamic economic dispatch for integrated energy system[J].Automation of Electric Power Systems,2021,45(5):39-47.
    [19] 许志恒,张勇军,陈泽兴,等.考虑运行策略和投资主体利益的电转气容量双层优化配置[J].电力系统自动化,2018,42(13):76-84.XU Zhiheng,ZHANG Yongjun,CHEN Zexing,et al.Bi-level optimal capacity configuration for power to gas facilities considering operation strategy and investment subject benefit[J].Automation of Electric Power Systems,2018,42(13):76-84.
    [20] 王源,南海鹏,关欣.风水储微电网优化调度策略研究[J].高压电器,2020,56(5):216-222.WANG Yuan,NAN Haipeng,GUAN Xin.Optimal scheduling strategy of wind-hydro-storage micro-grid[J].High Voltage Apparatus,2020,56(5):216-222.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋明喆,成贵学,赵晋斌.考虑动态荷储策略的综合能源系统双层规划模型[J].电力科学与技术学报,2022,37(5):44-57.
Jiang Mingzhe, Cheng Guixue, Zhao Jinbin. Double-deck planning model of integrated energy system in consideration of dynamic load energy storage strategy[J]. Journal of Electric Power Science and Technology,2022,37(5):44-57.

复制
分享
文章指标
  • 点击次数:276
  • 下载次数: 769
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-12-01
文章二维码