基于改进循环神经网络的配电网超短期功率预测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM71

基金项目:

国家重点研发计划(2020YFF0305800);国家电网有限公司科技项目(520201210025)


Ultra-short-term power prediction method of distribution network based on improved recurrent neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统单向循环神经网络在配电网超短期功率预测领域存在的预测曲线失形、模型过拟合现象以及预测精度不高和收敛速度慢等问题,提出基于小波变换和自注意力机制的双向循环神经网络改进模型。通过双向结构学习功率数据的前向和逆向规律提高模型预测精度;通过小波变换分摊整体功率预测难度以及改善过拟合和加快模型收敛速度;通过自注意力机制把握模型隐藏层维度关系进一步提高预测精度。算例证明改进模型可以有效改善上述问题,改进模型与传统单向模型相比,在有功预测场景中,MAE提升了50.1%,MAPE提升了43.3%,RMSE提升了51.1%;在无功预测场景中,MAE提升了60.5%,MAPE提升了63.8%,RMSE提升了60.1%。

    Abstract:

    The traditional one-directional neural network has some problems in the field of ultra-short-term power prediction in distribution networks, such as the out-of-shape curve prediction, the over-fitting phenomenon of the model, low prediction accuracy and slow convergence speed, etc. Thus, an improved bi-directional recurrent neural network model is proposed based on the wavelet transform and self-attention mechanism to overcome these problems. Firstly, the forward and reverse laws of the power data are studied by the bi-directional network to improve the prediction accuracy of the model. Afterward, the wavelet transform is employed to reduce the overall difficulty of power prediction. Consequently, the model overfitting is reduced, and the convergence speed is increased in the meantime. In the end, the self-attention mechanism is adopted to grasp the hidden layer dimensional relationship of the model to further improve the prediction accuracy. An example shows that the proposed improved model can eliminate the existing problems effectively. Compared with the traditional model, the MAE increased by 50.1%, MAPE increased by 43.3%, RMSE increased by 51.1%; in the reactive dataset, dataset MAE increased by 60.5%, MAPE increased by 63.8%, and RMSE increased by 60.1%.

    参考文献
    相似文献
    引证文献
引用本文

赵振兵,强一凡,李信,等.基于改进循环神经网络的配电网超短期功率预测方法[J].电力科学与技术学报,2022,37(5):144-154.
Zhao Zhenbing, Qiang Yifan, Li Xin, et al. Ultra-short-term power prediction method of distribution network based on improved recurrent neural network[J]. Journal of Electric Power Science and Technology,2022,37(5):144-154.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-01
  • 出版日期:
文章二维码