基于生成对抗网络的分布式光伏窃电数据增强方法
CSTR:
作者:
中图分类号:

TM615

基金项目:

贵州省科学技术基金(2021277)


A data augmentation method for distributed photovoltaic electricity theft using generative adversarial network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    由于分布式光伏窃电的稽查难度大,致使相关部门收集的窃电样本数量有限,无法满足基于数据驱动的窃电检测需求。通过数据增强的方式,提出一种基于Wasserstein生成对抗网络(WGAN)的分布式光伏窃电样本数据增强方法。首先,WGAN通过生成网络与判别网络的对抗训练,能够学习到光伏窃电数据序列难以显式建模的时间相关性,可以生成与真实窃电样本具有相近分布的新的窃电样本;然后,根据典型的光伏窃电模型,针对窃电样本的数据特征选用卷积神经网络(CNN)进行窃电检测;最后,通过算例分析,对比不同数据增强方法与分类器,表明WGAN生成的窃电样本能够符合真实样本的波动规律和历史数据的概率分布特征,进而有效改善分类器的检测性能。

    Abstract:

    Due to the difficulty of the inspection of distributed photovoltaic (PV) electricity theft, the number of electricity theft samples collected by relevant departments is limited, which cannot meet the needs of data-driven electricity theft detection. This paper proposes a data augmentation method for distributed PV electricity theft using Wasserstein generative adversarial network (WGAN). First, WGAN can explicitly learn the time correlation that is difficult to model in the PV electricity theft data sequence. Furthermore, it can generate new electricity theft samples with similar distributions to the real ones through the confrontation training of the generator and discriminator networks. Then, according to the typical PV electricity theft model and data characteristics, the convolutional neural network (CNN) is selected for electricity theft detection. Finally, through the case analysis, it is shown that the electricity theft samples generated by WGAN can conform to the fluctuation law of authentic samples and the probability distribution characteristics of historical data, thereby effectively improving the detection performance.

    参考文献
    [1] 罗一凡,蒋传文,李春哲,等.考虑分布式电源入网的反窃电综合管理方法[J].电器与能效管理技术,2015(4):49-55+59.LUO Yifan,JIANG Chuanwen,LI Chunzhe,et al.Integrated management method of anti-electricity stealing considering distributed generation[J].Electrical & Energy Management Technology,2015(4):49-55+59.
    [2] 薛阳,杨艺宁,廖文龙,等.基于非线性独立成分估计的分布式光伏窃电数据增强方法[J].电力系统自动化,2022,46(2):171-179.XUE Yang,YANG Yining,LIAO Wenlong,et al.Data augmentation method for distributed photovoltaic electricity theft based on non-linear independent components estimation[J].Automation of Electric Power Systems,2022,46(2):171-179.
    [3] 路艳巧,孙翠英,曹红卫,等.基于边缘计算与深度学习的输电设备异物检测方法[J].中国电力,2020,53(6):27-33.LU Yanqiao,SUN Cuiying,CAO Hongwei,et al.Foreign body detection method for transmission equipment based on edge computing and deep learning[J].Electric Power,2020,53(6):27-33.
    [4] 贾亦敏,史丽萍,严鑫.基于精英混沌蜂群算法优化小波神经网络的变压器故障诊断[J].高压电器,2020,56(8):230-236.JIA Yimin,SHI Liping,YAN Xin.Transformer fault diagnosis using wavelet neural network based on elite-chaos artificial bee colony algorithm[J].High Voltage Apparatus,2020,56(8):230-236.
    [5] LIU X,NIELSEN P S.Scalable prediction-based online anomaly detection for smart meter data[J].Information Systems,2018,77:34-47.
    [6] JANETZKO H,STOFFEL F,MITTELSTDT S,et al.Anomaly detection for visual analytics of power consumption data[J].Computers & Graphics,2014,38:27-37.
    [7] 巢政,温蜜.一种基于SMOTE和XGBoost的窃电检测方案[J].智慧电力,2020,48(11):97-102.CHAO Zheng,WEN Mi.Scheme for electricity theft detection based on SMOTE and XGBoost[J].Smart Power,2020,48(11):97-102.
    [8] CHEN T,GUESTRIN C.Xgboost:a scalable tree boosting system[C]//The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,California,USA,2016.
    [9] BUZAU MM,TEJEDOR-AGUILERA J,CRUZ-ROMERO P,et al.Hybrid deep neural networks for detection of non-technical losses in electricity smart meters[J].IEEE Transactions on Power Systems,2019,35(2):1254-1263.
    [10] 董立红,肖纯朗,叶鸥,等.一种基于CAEs-LSTM融合模型的窃电检测方法[J].电力系统保护与控制,2022,50(21):118-127.DONG Lihong,XIAO Chunlang,YE Ou,et al.Electricity theft detection method based on a CAEs-LSTM fusion model[J].Power System Protection and Control,2022,50(21):118-127.
    [11] 高嵩,陆倚鹏,王笑倩,等.基于深度学习的悬式瓷绝缘子红外图像识别方法[J].电力科学与技术学报,2020,35(5):119-125.GAO Song,LU Yipeng,WANG Xiaoqian,et al.Infrared image recognition method of porcelain disc-suspended insulators based on deep learning technology[J].Journal of Electric Power Science and Technology,2020,35(5):119-125.
    [12] FIGUEROA G,CHEN Y S,AVILA N,et al.Improved practices in machine learning algorithms for NTL detection with imbalanced data[C]//IEEE Power & Energy Society General Meeting,Chicago,USA:IEEE,2017.
    [13] 黄南天,王文婷,蔡国伟,等.计及复杂气象耦合特性的模块化去噪变分自编码器多源-荷联合场景生成[J].中国电机工程学报,2019,39(10):2924-2934.HUANG Nantian,WANG Wentin,CAI Guowei,et al.The joint scenario generation of multi source-load by modular denoising variational autoencoder considering the complex coupling characteristics of meteorology[J].Proceedings of the CSEE,2019,39(10):2924-2934.
    [14] 李远松,高博,须琳,等.基于差分序列方差与CPS融合的数字变电站数据异常检测方法[J].电网与清洁能源,2021,37(2):30-41.LI Yuansong,GAO Bo,XU Lin,et al.An anomaly detection method for digital substation abnormal data based on fusion of difference sequence variance and CPS[J].Power System and Clean Energy,2021,37(2):30-41.
    [15] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144.
    [16] 陈佛计,朱枫,吴清潇,等.生成对抗网络及其在图像生成中的应用研究综述[J].计算机学报,2021,44(2):347-369.CHEN Foji,ZHU Feng,WU Qingxiao,et al.A survey about image generation with generative adversarial nets[J].Chinese Journal of Computers,2021,44(02):347-369.
    [17] 刘建伟,谢浩杰,罗雄麟.生成对抗网络在各领域应用研究进展[J].自动化学报,2020,46(12):2500-2536.LIU Jianwei,XIE Haojie,LUO Xionglin.Research progress on application of generative adversarial networks in various fields[J].Acta Automatica Sinica,2020,46(12):2500-2536.
    [18] GE L,LIAO W,WANG S,et al.Modeling daily load profiles of distribution network for scenario generation using flow-based generative network[J].IEEE Access,2020,8:77587-77597.
    [19] 王守相,陈海文,潘志新,等.采用改进生成式对抗网络的电力系统量测缺失数据重建方法[J].中国电机工程学报,2019,39(1):56-64.WANG Shouxiang,CHEN Haiwen,PAN Zhixin,et al.A reconstruction method for missing data in power system measurement using an improved generative adversarial network[J].Proceedings of the CSEE,2019,39(1):56-64.
    [20] 廖一帆,武志刚.基于迁移学习与Wasserstein生成对抗网络的静态电压稳定临界样本生成方法[J].电网技术,2021,45(9):3722-3728.LIAO Yifan,WU Zhigang.The method to generate static voltage stability critical sample based on transfer learning and wasserstein generative adversarial network[J].Power System Technology,2021,45(9):3722-3728.
    [21] WANG Q,ZHOU X,WANG C,et al.WGAN-based synthetic minority over-sampling technique:Improving semantic fine-grained classification for lung nodules in CT images[J].IEEE Access,2019,7:18450-18463.
    [22] 王晓琦.基于光伏出力计算模型的窃电监管技术研究[D].南京:东南大学,2016.
    [23] 招景明,唐捷,潘峰,等.基于SDAE和双模型联合训练的低压用户窃电检测方法[J].电测与仪表,2021,58(12):161-168.ZHAO Jingming,TANG Jie,PAN Feng,et al.Detection method of electricity theft for low-voltage users based on SDAE and double-model joint training[J].Electrical Measurement & Instrumentation,2021,58(12):161-168.
    [24] 蓝金辉,王迪,申小盼.卷积神经网络在视觉图像检测的研究进展[J].仪器仪表学报,2020,41(4):167-182.LAN Jinhui,WANG Di,SHEN Xiaopan.Research progress on visual image detection based on convolutional neural network[J].Chinese Journal of Scientific Instrument,2020,41(4):167-182.
    [25] 杨龙,吴红斌,丁明,等.新能源电网中考虑特征选择的Bi-LSTM网络短期负荷预测[J].电力系统自动化,2021,45(3):166-173.YANG Long,WU Hongbin,DING Ming,et al.Short-term load forecasting in renewable energy grid based on bi-directional long short-term memory network considering feature selection[J].Automation of Electric Power Systems,2021,45(3):166-173.
    [26] 杨德昌,廖文龙,任翔,等.基于胶囊网络的电力变压器故障诊断[J].高电压技术,2021,47(2):415-425.YANG Dechang,LIAO Wenlong,REN Xiang,et al.Fault diagnosis of transformer based on capsule network[J].High Voltage Engineering,2021,47(2):415-425.
    [27] National renewable energy laboratory.Solar integration national dataset toolkit[EB/OL].https://www.nrel.gov/grid/sind-toolkit.html,2020-12-17.
    [28] 廖文龙,于贇,王煜森,等.基于图卷积网络的配电网无功优化[J].电网技术,2021,45(6):2150-2160.LIAO Wenlong,YU Yun,WANG Yusen,et al.Reactive power optimization of distribution network based on graph convolutional network[J].Power System Technology,2021,45(6):2150-2160.
    相似文献
    引证文献
引用本文

李景歌,荣娜,陈庆超.基于生成对抗网络的分布式光伏窃电数据增强方法[J].电力科学与技术学报,2022,37(5):181-190.
Li Jingge, Rong Na, Chen Qingchao. A data augmentation method for distributed photovoltaic electricity theft using generative adversarial network[J]. Journal of Electric Power Science and Technology,2022,37(5):181-190.

复制
分享
文章指标
  • 点击次数:242
  • 下载次数: 1014
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-12-01
文章二维码