基于生成对抗网络的分布式光伏窃电数据增强方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM615

基金项目:

贵州省科学技术基金(2021277)


A data augmentation method for distributed photovoltaic electricity theft using generative adversarial network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于分布式光伏窃电的稽查难度大,致使相关部门收集的窃电样本数量有限,无法满足基于数据驱动的窃电检测需求。通过数据增强的方式,提出一种基于Wasserstein生成对抗网络(WGAN)的分布式光伏窃电样本数据增强方法。首先,WGAN通过生成网络与判别网络的对抗训练,能够学习到光伏窃电数据序列难以显式建模的时间相关性,可以生成与真实窃电样本具有相近分布的新的窃电样本;然后,根据典型的光伏窃电模型,针对窃电样本的数据特征选用卷积神经网络(CNN)进行窃电检测;最后,通过算例分析,对比不同数据增强方法与分类器,表明WGAN生成的窃电样本能够符合真实样本的波动规律和历史数据的概率分布特征,进而有效改善分类器的检测性能。

    Abstract:

    Due to the difficulty of the inspection of distributed photovoltaic (PV) electricity theft, the number of electricity theft samples collected by relevant departments is limited, which cannot meet the needs of data-driven electricity theft detection. This paper proposes a data augmentation method for distributed PV electricity theft using Wasserstein generative adversarial network (WGAN). First, WGAN can explicitly learn the time correlation that is difficult to model in the PV electricity theft data sequence. Furthermore, it can generate new electricity theft samples with similar distributions to the real ones through the confrontation training of the generator and discriminator networks. Then, according to the typical PV electricity theft model and data characteristics, the convolutional neural network (CNN) is selected for electricity theft detection. Finally, through the case analysis, it is shown that the electricity theft samples generated by WGAN can conform to the fluctuation law of authentic samples and the probability distribution characteristics of historical data, thereby effectively improving the detection performance.

    参考文献
    相似文献
    引证文献
引用本文

李景歌,荣娜,陈庆超.基于生成对抗网络的分布式光伏窃电数据增强方法[J].电力科学与技术学报,2022,37(5):181-190.
Li Jingge, Rong Na, Chen Qingchao. A data augmentation method for distributed photovoltaic electricity theft using generative adversarial network[J]. Journal of Electric Power Science and Technology,2022,37(5):181-190.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-01
  • 出版日期:
文章二维码