基于超声合成孔径弧形扫描联合算法的变压器绕组故障检测方法
CSTR:
作者:
中图分类号:

TM403.2

基金项目:

国家自然科学基金(61673268)


Fault detection method of transformer winding based on combined algorithm of ultrasonic synthetic aperture arc scanning
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • | | | |
  • 文章评论
    摘要:

    为解决变压器绕组超声检测系统的分辨率会随检测距离的增加而降低的问题,提出超声合成孔径弧形扫描联合算法,使检测系统的分辨率不再随检测深度的提高而降低,仅与换能器本身相关,并且实现了故障快速定位,提高了检测效率与检测精度。最后,设计变压器绕组超声合成孔径检测系统,采用400 kHz超声换能器对实体变压器进行实验,最终实验结果表明,该检测系统能在线、快速定位变压器绕组变形故障,并且检测结果的相对误差仅为4.26%。

    Abstract:

    In order to solve the problem that the resolution of the transformer windings ultrasonic detection system decreases with the increasing detection distance, this paper proposes a combined algorithm of ultrasonic synthetic aperture arc scanning, so that the resolution of the detection system is only related to the transducer itself. By applying the proposed method, faults can be quickly located, thus detection efficiency and detection accuracy are improved. Finally, a transformer winding ultrasonic synthetic aperture detection system is designed in this paper, and a 400 kHz ultrasonic transducer is used to conduct experiments on a transformer. The final experimental results show that the detection system can locate the deformation position of the transformer winding quickly online. The relative error of the detection is only 4.26%.

    参考文献
    [1] 张仕民,丰遥.基于振动信号的变压器铁心与绕组故障区分方法[J].电测与仪表,2021,58(6):161-166.ZHANG Shimin,FENG Yao.Discrimination method of transformer core and winding fault based on vibrationsignal[J].Electrical Measurement & Instrumentation,2021,58(6),161-166.
    [2] 李典阳,张育杰,王善渊,等.基于多预测模型融合的电力变压器安全预判[J].中国电力,2020,53(1):72-80.LI Dianyang,ZHANG Yujie,WANG Shanyuan,et al.Safety prejudging method for power transformer based on multi-prediction model fusion[J].Electric Power,2020,53(1):72-80.
    [3] 张羲海,张葛祥,王健,等计及继电保护与油气信息的变压器故障推理[J].高压电器,2020,56(9):136-143.ZHANG Xihai,ZHANg Gexiang,WANG Jian,et al.Transformer fault reasoning under relay protection and gas dissolved in oil information[J].High Voltage Apparatus,2020,56(9):136-143.
    [4] 肖超,韩伟,李琼林,等.柔性直流输电系统交流侧线路继电保护适应性研究[J].智慧电力,2020,48(4):8.XIAO Chao,HAN Wei,LI Qionglin,et al.Adaptability of MMC-HVDC system on relay protection of AC transmission lines[J].Smart Power,2020,48(4):1-8.
    [5] 方涛,钱晔,郭灿杰,等.基于天牛须搜索优化支持向量机的变压器故障诊断研究[J].电力系统保护与控制,2020,48(20):90-96.FANG Tao,QIAN Ye,GUO Canjie,et al.Research on transformer fault diagnosis based on a beetle antennae search optimized support vector machine[J].Power System Protection and Control,2020,48(20):90-96.
    [6] 陈一鸣,梁军,张静伟,等.基于改进参数辨识的三绕组变压器绕组状态在线监测方法[J].高电压技术,2019,45(5):1567-1575.CHEN Yiming,LIANG Jun,ZHANG Jingwei,et al.Method of online status monitoring for windings of three-winding transformer based on improved parameter identification[J].High Voltage Technology,2019,45(5):1567-1575.
    [7] 李成祥,夏麒,朱天宇,等.基于脉冲频率响应法的变压器绕组变形带电检测仪[J].电力自动化设备,2018,38(1):110-115.LI Chengxiang,XIA Qi,ZHU Tianyu,et al.Live transformer winding deformation detector based on impulse frequency response method[J].Power Automation Equipment,2018,38(1):110-115.
    [8] 刘勇,汲胜昌,杨帆,等.检测变压器故障的扫频阻抗法特性研究及应用[J].高电压技术,2016,42(10):3237-3245.LIU Yong,JI Shengchang,YANG Fan,et al.Characteristics and application of sweep frequency impedance method for detecting transformer fault[J].High Voltage Technology,2016,42(10):3237-3245.
    [9] 颜君凯,马宏忠,李凯,等.基于振动信号的变压器绕组松动故障诊断方法[J].电力系统自动化,2017,41(3):122-128.YAN Junkai,MA Hongzhong,LI Kai,et al.Vibration signal based diagnosis method for looseness fault of transformer winding[J].Automation of Electric Power Systems,2017,41(3):122-128.
    [10] 李振华,蒋伟辉,喻彩云,等.基于短路阻抗及ΔU-I1轨迹特征联合分析的变压器绕组变形故障在线检测方法[J].电力自动化设备,2021,41(7):203-209+217.LI Zhenhua,JIANG Weihui,YU Caiyun,et al.Online detection method of transformer winding deformation based on combined analysis of short circuit impedance and ΔU-I1 locus characteristics[J].Power automation equipment,2021,41(7):203-209+217.
    [11] 李振华,张阳坡,姚为方,等.基于扫频阻抗法及支持向量机的变压器绕组微小变形分类方法[J].变压器,2021,58(1):17-22+29.LI Zhenhua,ZHANG Yangpo,YAO Weifang,et al.Transformer winding micro-deformation classification method based on sweep frequency impedance method and support vector machine[J].Transformer,2021,58(1):17-22+29.
    [12] 徐建源,陈彦文,李辉,等.基于短路电抗与振动信号联合分析的变压器绕组变形诊断[J].高电压技术,2017,43(6):2001-2006.XU Jianyuan,CHEN Yanwen,LI Hui,et al.Transformer winding deformation analysis based on short-circuit reactance and vibration signal analysis[J].High Voltage Technology,2017,43(6):2001-2006.
    [13] 王昕,刘伟家,郑益慧,等.基于超声波技术的绕组变形3维成像检测装置设计[J].高电压技术,2017,43(12):4054-4059.WANG Xin,LIU Weijia,ZHENG Yihui,et al.Design of 3D imaging winding deformation detection device based on ultrasonic method[J].High Voltage Technology,2017,43(12):4054-4059.
    [14] HASEGAWA H.Enhancing effect of phase coherence factor for improvement of spatial resolution in ultrasonic imaging[J].Journal of Medical Ultrasonics,2018,43(1):1-9.
    [15] 王赞,郑理威,陈忠贤,等.基于光纤EFPI传感器的GIS局部放电研究[J].电网与清洁能源,2022,38(2):67-75.WANG Zan,ZHENG Liwei,CHEN Zhongxian,et al.Research on partial discharge of GIS based on optical fiber EFPI sensor[J].Power System and Clean Energy,2022,38(2):67-75.
    [16] 郑驰超,成娟,彭虎.次方样本熵自适应加权的超声合成孔径成像算法[J].声学学报,2017,42(1):109-114.ZHENG Chichao,CHENG Juan,PENG Hu.Ultrasonic synthetic aperture imaging algorithm based on power sample entropy as adaptive weight[J].Acta Acoustica,2017,42(1):109-114.
    [17] 李俊燕,沈中华,倪晓武,等.基于合成孔径聚焦技术的激光超声无损检测方法研究[J].中国激光,2018,45(9):269-275.LI Junyan,SHEN Zhonghua,NI Xiaowu,et al.Laser-ultrasonic non-destructive detection based on synthetic aperture focusing technique[J].Chinese Journal of Lasers,2018,45(9):269-275.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周楠,王昕,杨海龙.基于超声合成孔径弧形扫描联合算法的变压器绕组故障检测方法[J].电力科学与技术学报,2022,37(5):198-206.
Zhou Nan, Wang Cuan, Yang Hailong. Fault detection method of transformer winding based on combined algorithm of ultrasonic synthetic aperture arc scanning[J]. Journal of Electric Power Science and Technology,2022,37(5):198-206.

复制
分享
文章指标
  • 点击次数:184
  • 下载次数: 692
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-12-01
文章二维码