改进PSO优化RBF智能电能表端子温度检测方法
CSTR:
作者:
中图分类号:

TM930

基金项目:

国家电网有限公司科技项目(52185220000A);国家自然科学基金(51777061)


Terminal temperature detection method for smart meter based on RBF neural network optimized by improved PSO
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对智能电表前端接线端子温度难以直接检测的问题,提出一种改进粒子群优化径向基神经网络的智能电能表温度端子检测方法。首先基于RBF神经网络建立电能表端子温度与其影响因素映射关系式,通过K-Means++算法获取合适网络核函数的中心位置;然后利用递推最小二乘法求解网络核函数连接权值;最后通过改进粒子群优化RBF神经网络宽度系数和模型训练,推导优化温度映射表达式,据此实现智能电能表端子温度检测。仿真实验结果表明:提出的多种群互生改进粒子群优化径向基神经网络算法计算准确度高、搜索能力强、收敛速度快,温度检测相对误差小于0.17%,相比于现有检测方法具有更高的准确度。

    Abstract:

    Aiming at the problem that it is difficult to directly detect the temperature of the front-end terminal of the smart meter, this paper proposes an improved particle swarm optimization radial basis function neural network for the detection of the temperature terminal of the smart meter. First, the mapping relationship between the terminal temperature of the electric energy meter and its influencing factors based on the RBF neural network is established. The central position of the appropriate network core function is selected through the K-Means++ algorithm, and the recursive least square method is used to obtain the network core function connection weight. The improved particle swarm algorithm is used to optimize the width coefficient of RBF neural network and model training, and the optimized temperature mapping expression is derived. Then the terminal temperature detection of the smart electric energy meter is realized. The simulation results show that the improved particle swarm hybrid optimization radial basis function neural network algorithm proposed in this paper has high calculation accuracy, strong search ability, fast convergence speed, and the relative error of temperature detection is less than 0.17%. Compared with the existing detection methods, the proposed method has higher accuracy.

    参考文献
    [1] ALBU M M,SǎNDULEAC M,STǎNESCU C.Syncretic use of smart meters for power quality monitoring in emerging networks[J].IEEE Transactions on Smart Grid,2017,8(1):485-492.
    [2] 陈伟根,张知先,李剑,等.电气设备状态参量智能传感技术[J].中国电机工程学报,2020,40(S1):323-342.CHEN Weigen,ZHANG Zhixian,LI Jian,et al.Intelligent sensing technology for power equipment state parameters[J].Proceedings of the CSEE,2020,40(S1):323-342.
    [3] 李鹏,毕建刚,于浩,等.变电设备智能传感与状态感知技术及应用[J].高电压技术,2020,46(9):3097-3113.LI Peng,BI Jiangang,YU Hao,et al.Technology and application of intelligent sensing and state sensing for transformation equipment[J].High Voltage Engineering,2020,46(9):3097-3113.
    [4] ALAHAKOON D.,YU X.Smart electricity meter data intelligence for future energy systems:a survey[J].IEEE Transactions on Industrial Informatics,2016,12(1):425-436.
    [5] 张振宇,程诺,罗翔,等.10 kV配电网高温超导电缆电热耦合模型仿真分析[J].高压电器,2020,56(11):203-209.ZHANG Zhenyu,CHENG Nuo,LUO Xiang,et al.Electrical-thermal coupling model analysis of high temperature superconducting power cable utilized in 10 kV power distribution system[J].High Voltage Apparatus,2020,56(11):203-209.
    [6] CHONG S,RUI S,JIE L,et al.Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural network[J].Mechanical Systems and Signal Processing,2016,72:897-905.
    [7] 刘浩然,周凯,王昱皓,等.基于电磁耦合注入的电力电缆局部缺陷在线定位方法[J].中国电力,2021,54(12):177-185+194.LIU Haoran,ZHOU Kai,WANG Yuhao,et al.An online location method for local defects in power cables based on electromagnetic coupling injection[J].Electric Power,2021,54(12):177-185+194.
    [8] 蔡卫江,李雪锋,赵士正.基于粒子群算法的SVC抑制阻尼系统振荡控制器设计[J].电力科学与技术学报,2020,35(5):60-65.CAI Weijiang,LI Xuefeng,ZHAO Shizheng.Design of oscillation controller for SVC damping system based on particle swarm algorithm[J].Journal of Electric Power Science and Technology,2020,35(5):60-65.
    [9] 张磊,杨廷方,李炜,等.基于LSTSVR模型的边缘计算预测变压器平均油温及绕组热点温度[J].电力自动化设备,2020,40(8):197-203.ZHANG Lei,YANG Tingfang,LI Wei,et al.Prediction of transformer average oil temperature and winding hot spot temperature by edge computation based on LSTSVR model[J].Electric Power Automation Equipment,2020,40(8):197-203.
    [10] LI J,SUN Y,DONG N.A novel contact temperature calculation algorithm in distribution switchgears for condition assessment[J].IEEE Transactions on Components,Packaging and Manufacturing Technology,2019,9(2):279-287.
    [11] 周敬嵩,俞京锋,唐圣丰,等.基于移动式红外测温的变电站设备温度预警系统[J].电力科学与技术学报,2020,35(1):163-168.ZHOU Jingsong,YU Jingfeng,TANG Shengfeng,et al.Research on temperature early warning system for substation equipments based on mobile infrared temperature measurement[J].Journal of Electric Power Science andTechnology,2020,35(1):163-168.
    [12] 白静芬,卢达,徐励,等.智能电能表自动化检定流水线的温度参比条件影响分析[J].电测与仪表,2020,57(11):121-127.BAI Jingfen,LU Da,XU Li,et al.Analysis of temperature condition influence of automatic calibrating conveyor line in smart electricity meter[J].Electrical Measurement & Instrumentation,2020,57(11):121-127.
    [13] 刘煜,王俊江,焦青,等.基于量子行为粒子群算法的含分布式电源的配电网故障定位[J].智慧电力,2020,48(8):51-55.LIU Yu,WANG Junjiang,JIAO Qing,et al.Fault location of distribution network with distributed power supply based on quantum behavior particle swarm optimization algorithm[J].Smart Power,2020,48(8):51-55.
    [14] 皮骏,黄江博,黄磊,等.基于改进QPSO-SVR的航空发动机排气温度预测[J].振动.测试与诊断,2019,39(2):267-272+440.PI Jun,HUANG Jiangbo,HUANG Lei,et al.Aeroengine exhaust gas temperature prediction based on QPSO-SVR[J].Journal of Vibration,Measurement & Diagnosis,2019,39(2):267-272+440.
    [15] FERRARI S,BELLOCCHIO F,PURI V,et al.A hierachical RBF online learning algorithm for real-time 3-D scanner[J].IEEE Transactions on Neural Networks,2010,21(2):275-285.
    [16] KOKSHENEV I,BRAGA A P.An efficient multi-objective learning algorithm for RBF neural network[J].Neurocomputing,2010,73(16):2799-2808.
    [17] 汉京善,吕海平,李丹煜,等.基于GA-BP神经网络算法的输电线路舞动预警方法[J].电网与清洁能源,2021,37(4):1-7+14.HAN Jingshan,Lü Haiping,LI Danyu,et al.Prediction of transmission line galloping using improved bp neural network based on genetic algorithm[J].Power System and Clean Energy,2021,37(4):1-7+14.
    [18] 关鹏,焦玉勇,段新胜.基于RBF神经网络的土体导热系数非线性预测[J].太阳能学报,2021,42(3):171-178.GUAN Peng,JIAO Yuyong,DUAN Xinsheng.Non-linear prediction of soil thermal conductivity based on RBF neural network[J].Acta Energiae Solaris Sinica,2021,42(3):171-178.
    [19] 王海宝,王峥,周娴姊,等.基于脉冲转换温度传感方法的电力设备温度监测系统研究[J].电力系统保护与控制,2020,48(24):180-187.WANG Haibao,WANG Zheng,ZHOU Xianzi,et al.Temperature monitoring system for distribution network equipment using a pulseconversion temperature sensing method[J].Power System Protection and Control,2020,48(24):180-187.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

樊友杰,邓祥东,高云鹏,等.改进PSO优化RBF智能电能表端子温度检测方法[J].电力科学与技术学报,2022,37(5):207-214.
Fan Youjie, Deng Xiangdong, Gao Yunpeng, et al. Terminal temperature detection method for smart meter based on RBF neural network optimized by improved PSO[J]. Journal of Electric Power Science and Technology,2022,37(5):207-214.

复制
分享
文章指标
  • 点击次数:176
  • 下载次数: 795
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-12-01
文章二维码