非匹配非线性系统的ACPID控制方法
CSTR:
作者:
中图分类号:

TP273

基金项目:

湖南省教育厅重点项目(17A006)


ACPID control method of unmatched nonlinear systems
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • | | | |
  • 文章评论
    摘要:

    非匹配扰动是工程实际问题中常见的干扰类型,传统的控制方法难以达到理想的控制效果,在此背景下,针对一类非匹配非线性系统,提出一种基于自耦PID(ACPID)控制理论的控制方法。首先,将非匹配通道的外部扰动与内部状态定义为一个未知状态,同时将内部动态、外部扰动定义为一个总和扰动,从而将非匹配非线性系统映射为一个等价的未知线性系统。其次,构建一个受总和扰动反相激励的受控误差系统,结合ACPID控制理论设计ACPD控制器,构造闭环控制系统模型,并分析闭环控制系统的鲁棒稳定性。最后,以二阶非匹配非线性系统为例验证所提方法的有效性。仿真结果表明,ACPID控制系统不仅具有良好的动态品质和稳态性能,而且还具有良好的抗扰动鲁棒性和快的响应速度,在电力、交通、航空航天等广泛领域具有实际应用前景。

    Abstract:

    The unmatched disturbance is a common disturbance type in practical engineering problems, and traditional control methods are difficult to achieve ideal control performance. Under the background, a control method based on auto-coupling PID(Auto-Coupling Proportional-Integral-Differential, ACPID) control theory is utilized to solve the control problem of a class of nonlinear systems with non-matching disturbances. Firstly, the external disturbances and internal state of this method in the unmatched channel are defined as new unknown states. Meanwhile, the internal dynamics and external disturbances are defined as total disturbances. Then, the system can be transferred to an equivalent unknown linear system. After that, a controlled error system under the reverse phase excitation of the disturbances is constructed. The ACPID control method is employed to design the controller and the closed loop control system model is obtained successfully. The robust stability of the closed-loop control system is also analyzed afterward. In the end, a 2nd order nonlinear system is simulated for verification. It is shown that the ACPD control system not only has good dynamic and steady-state performances, but also has good anti-disturbance robustness with a fast response speed. It can be considered for the application of electric power, transportation, aerospace, and other extensive fields.

    参考文献
    [1] CHOI H.LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems[J].IEEE Transactions on Automatic Control,2007,52(4):736-742.
    [2] YANG J,LI S,YU,X.Sliding-mode control for systems with mismatched uncertainties via a disturbance observ-er[J].IEEE Transactions on Industrial Electronics,2013,60(1):160-169.
    [3] LI S,YANG J,CHEN W,et al.Generalized extended state observer based control for systems with mismatched uncertainties[J].IEEE Transactions on Industrial Electronics,2012,59(12):4792-4802.
    [4] WEI X,GUO L.Composite disturbance-observer-based control and H∞ controlfor complex continuous models[J].International Journal of Robust & Nonlinear Control,2010,20(1):106-118.
    [5] WEI X,GUO L.Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances[J].International Journal of Control,2009,82(6):1082-1098.
    [6] 李强,方一鸣,李建雄,等.非匹配不确定性下连铸结晶器振动位移系统准滑模控制[J].控制与决策,2020,35(7):1615-1622.LI Qiang,FANG Yiming,LI Jianxiong,et al.Quasi-sliding mode control for mold vibration displacement system with unmatched uncertainties[J].Control and Decision,2020,35(7):1615-1622.
    [7] 曾喆昭,吴亮东,陈韦名.基于ESO的一类线性时变系统自学习滑模控制方法[J].控制与决策,2016,31(11):2101-2105.ZENG Zhezhao,WU Liangdong,CHEN Weiming.Self-learning sliding mode control method of a class of linear time-varying systems based on ESO[J].Control and Decision,2016,31(11):2101-2105.
    [8] 曾喆昭,吴亮东,杨振源,等.非仿射系统的自学习滑模抗扰控制[J].控制理论与应用,2016,33(7):980-987.ZENG Zhezhao,WU Liangdong,YANG Zhenyuan,et al.Self-learning sliding mode disturbance rejection control for non-affine systems[J].Control Theory & Applications,2016,33(7):980-987.
    [9] 王坤,王建美,王芳,等.非匹配不确定系统的滑模控制及在电机控制中的应用[J].控制理论与应用,2019,36(1):143-150.WANG Kun,WANG Jianmei,WANG Fang,et al.Sliding mode control for nonlinear system with mismatched uncertainties and application in motor control[J].Control Theory & Applications,2019,36(1):143-150.
    [10] CHEN S,BAI W Y,HU Y,et al.On the conceptualization of total disturbance and its profound implications[J].Science China Information Sciences,2020,63(2):221-223.
    [11] 贾鹤鸣,宋文龙.基于非线性干扰观测器的L2滤波反步控制[J].中南大学学报(自然科学版),2014,45(8):2640-2647.JIA Heming,SONG Wenlong.L2 filtered backstepping control based on nonlinear disturbance observer[J].Journal of Central South University(Scienceand Technology),2014,45(8):2640-2647.
    [12] 杨晓骞,李健,董毅.非线性不确定系统的非奇异快速终端滑模控制[J].控制理论与应用,2016,33(6):772-778.YANG Xiaoqian,LI Jian,DONG Yi.A novel non-singular fast terminal sliding mode control of nonlinear systems with uncertain dist-urbances[J].Control Theory & Applications,2016,33(6):772-778.
    [13] 韩吉霞,马飞越,佃松宜,等.基于非线性干扰观测器不确定系统的终端滑模控制[J].电光与控制,2020,27(2):28-34.HAN Jixia,MA Feiyue,DIAN Songyi,et al.Terminalsliding mode control for uncertain systems based on nonlinear disturbance observer[J].Electronics Optics & Control,2020,27(2):28-34.
    [14] 江道根,江维,潘世华,等.不确定非线性系统自适应反演积分滑模控制[J].控制工程,2021,28(9):1780-1786.JIANG Daogen,JIANG Wei,PAN Shihua,et al.Adaptiveintegral back-stepping sliding mode control for an uncertain nonlinear systems[J].Control Engineering of China,2021,28(9):1780-1786.
    [15] 彭泓,柴华.非匹配不确定系统的自适应反演准滑模控制[J].测控技术,2016,35(9):66-69.PENG Hong,CHAI Hua.Adaptivebackstepping quasi sliding mode control of mismatched uncertain systems[J].Measurement & Control Technology,2016,35(9):66-69.
    [16] 罗连杰,佃松宜,蒲明.一类非线性不确定系统的滑模反演控制[J].电光与控制,2017,24(12):27-30.LUO Lianjie,DIAN Songyi,PU Ming.Backstepping sliding-mode control for an uncertain nonlinearsystem[J].Electronics Optics & Control,2017,24(12):27-30.
    [17] 李建雄,章启宇,高崇一,等.带有非匹配扰动的连铸结晶器振动位移系统自适应反步滑模控制[J].控制与决策,2018,35(3):578-586.LI Jianxiong,ZHANG Qiyu,GAO Chongyi,et al.Adaptivebackstepping sliding mode control for the oscillation displacement system of continuous casting mold with unmatched perturbations[J].Control and Decision,2018,35(3):578-586.
    [18] 曾喆昭,刘文珏.自耦PID控制器[J].自动化学报,2021,47(2):404-422.ZENG Zhezhao,LIU Wenjue.Self-coupling PID con-trollers[J].Acta Automatica Sinica,2021,47(2):404-422.
    [19] 陈志翔,高钦和,谭立龙,等.基于非线性扩张状态观测器的直线电机PD控制[J].国防科学技术大学学报,2018,40(6):151-156.CHEN Zhixiang,GAO Qinhe,TAN Lilong,et al.PD controller for linear motors via nonlinear extended state observer[J].Journal of National University of Defense Technology,2018,40(6):151-156.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄丹,许惠清,庄磊,等.非匹配非线性系统的ACPID控制方法[J].电力科学与技术学报,2022,37(5):222-228.
Huang Dan, Xu Huiqing, Zhuang Lei, et al. ACPID control method of unmatched nonlinear systems[J]. Journal of Electric Power Science and Technology,2022,37(5):222-228.

复制
分享
文章指标
  • 点击次数:367
  • 下载次数: 915
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2022-12-01
文章二维码