基于格兰杰因果与ARDL模型的高能耗产业用电量预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM621

基金项目:

福建省科学技术协会科技创新智库课题研究项目(Fjkx-B2009); 国家重点研发计划(2018YFB0905200)


Research on forecasting electricity consumption of high-energy-consuming industries based on Granger causality and ARDL model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为挖掘产业经济发展与电力大数据之间的耦合关系,构建高耗能产业用电量与多元经济指标数据之间的向量自回归(VAR)模型。通过使用格兰杰(Granger)因果关系检验的方法,提取对用电量预测有显著影响的产业经济指标数据,在此基础上建立考虑经济因素影响的高耗能产业用电量自回归分布滞后(ARDL)模型。以某地区2016—2020年产业用电和经济数据进行算例分析,结果表明:Granger因果关系检验可以有效地挖掘与细分产业用电量相关联的经济指标;将这些经济因素考虑到产业用电预测模型中,可以有效地提高模型的预测精度。

    Abstract:

    In order to explore the coupling relationship between the industrial economic development and power big data, a vector auto regressive (VAR) model is constructed between the electricity consumption of high-energy-consuming industries and the data of multiple economic indicators. By using the Granger causality test method, industrial economic index data are extracted that has a significant impact on electricity consumption forecasting. Based on this, an Auto Regressive Distributed Lag (ARDL) model of electricity consumption is established in high-energy-consuming industries that takes economic factors into account. An example analysis of industrial electricity consumption and economic data in a certain region from 2016 to 2020 shows that the Granger causality test can effectively dig out the economic indicators related to the electricity consumption of subdivided industries. Considering these economic factors in the regression model, the prediction accuracy of the model is effectively improved.

    参考文献
    相似文献
    引证文献
引用本文

沈豫,黄夏楠,刘林,等.基于格兰杰因果与ARDL模型的高能耗产业用电量预测[J].电力科学与技术学报,2022,37(6):165-172.
SHEN Yu, HUANG Xianan, LIU Lin, et al. Research on forecasting electricity consumption of high-energy-consuming industries based on Granger causality and ARDL model[J]. Journal of Electric Power Science and Technology,2022,37(6):165-172.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-01-16
  • 出版日期:
文章二维码