基于周期调整负荷成分指数的行业用电大数据价值挖掘
CSTR:
作者:
中图分类号:

TM-9

基金项目:

深圳供电局有限公司科技项目(SZKJXM20190594)


Big data mining of industry power consumption based on component index about seasonal-adjusted load
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    能源数字经济背景下为展示行业用户的用电行为,探索地区和行业的经济景气情况,本文借鉴股市成分指数提出一种周期调整负荷成分指数。首先,按照给定规则筛选出具有代表性的若干位行业用户;然后,利用周期分解算法提取所选用户历史日电量的周期分量,以计算调整日电量,并提出工作强度系数,再考虑其所涉及的行业及其个体差异提出多项指标,并基于模糊专家评价法等方式计算其权重以对调整日电量加权整合;最后,选定基期展示负荷指数曲线。分析可得,工作强度系数有助于联系实际生产活动,指数能够及时反映地区日用电行为模式,且去除气温影响后与经济指标强相关,能够阐释投资、产出与生产间的关系以及表征社会主体经济的动向。

    Abstract:

    Under the background of energy digital economy, in order to display and analyze power consuming behavior, and to explore regional economic trends, this paper proposes a periodic adjusted load component index by referring to the stock market index. Firstly, some representative enterprise users are selected as samples based on given rules. Then, the periodic components of the selected user's historical daily electricity quantity are extracted by STL. Hence, the adjustment of the daily electricity quantity can be calculated, and the working strength coefficient is proposed. Then, according to the industry and individual differences, multiple indices are proposed, and the cycle adjusted daily load is weighted and integrated by fuzzy expert evaluation method. After that, based on a selected day’s value, the load trend can be displayed. Finally, the analysis shows that the working strength coefficient is helpful to link with the actual production activities, and the load index can reflect regional daily electricity consumption behavior. Furthermore, after neglecting the influence of temperature, the index has a strong correlation with economic indicators, which can explain the relationship between investment, output and production, and represent the economy of social subject.

    参考文献
    [1] ZHAO J H,WANG Y F,XIA Y B,et al.Simulation research on the role of energy revolution in the rise of China’s five central provinces[J].IOP Conference Series:Earth and Environmental Science,2021,680(1):012038.
    [2] 袁斌,张皓维,崔萌萌.基于深度学习的电力基建现场安全管控系统[J].电网与清洁能源,2020,36(9):30-36.YUAN Bin,ZHANG Haowei,CUI Mengmeng.Deep learning based security and control system in power grid construction[J].Power System and Clean Energy,2020,36(9):30-36.
    [3] 陈睿欣,刘素蔚.能源数字经济为经济社会带来新动能[EB/OL].https://www.sohu.com/a/404984306_120051337,2020-06-30.
    [4] 张铁峰,顾明迪.电力用户负荷模式提取技术及应用综述[J].电网技术,2016,40(3):804-811.ZHANG Tiefeng,GU Mingdi.Overview of electricity customer load pattern extraction technology and its application[J].Power System Technology,2016,40(3):804-811.
    [5] RYU S,CHOI H,LEE H,et al.Convolutional autoencoder based feature extraction and clustering for customer load analysis[J].IEEE Transactions on Power Systems,2020,35(2):1048-1060.
    [6] 曹华珍,吴亚雄,李浩,等.基于海量数据的多维度负荷特性分析系统开发[J].电力系统保护与控制,2021,49(6):155-166.CAO Huazhen,WU Yaxiong,LI Hao,et al.Development of a multi-dimensional load characteristic analysis system based on massive data[J].Power System Protection and Control,2021,49(6):155-166.
    [7] 李富鹏,沈秋英,王森,等.基于大数据和多因素组合分析的单元制配电网精细化负荷预测[J].智慧电力,2020,48(1):55-62.LI Fupeng,SHEN Qiuying,WANG Sen,et al.Refined load forecasting method for unit distribution network based on big data and multiple factors[J].Smart Power,2020,48(1):55-62.
    [8] 陶鹏,张洋瑞,李梦宇,等.基于Graph模型的海量用电数据并行聚类分析[J].电力科学与技术学报,2020,35(6):144-151.TAO Peng,ZHANG Yangrui,LI Mengyu,et al.Parallel clustering analysis for power consumption data based on graph model[J].Journal of Electric Power Science and Technology,2020,35(6):144-151.
    [9] 史连军,庞博,刘敦楠,等.新电改下北京电力交易中心电力市场综合指数的交易分析[J].电力系统自动化,2019,43(6):163-170.SHI Lianjun,PANG Bo,LIU Dunnan,et al.Power market transaction analysis of index of beijing electric power exchange center under new electricity reform[J].Automation of Electric Power Systems,2019,43(6):163-170.
    [10] 孙清岩.股票价格指数编制理论研究[D].大连:东北财经大学,2010.
    [11] 莫文火,陈碧云.基于邻域关系矩阵的电力大数据增量式属性约简研究[J].高压电器,2020,56(8):192-197+204.MO Wenhuo,CHEN Biyun.Incremental attribute reduction of electric power big data based on neighborhood relation matrix[J].High Voltage Apparatus,2020,56(8):192-197+204.
    [12] 华志刚,范佳卿,郭荣,等.人工智能技术在火电行业的应用探讨[J].中国电力,2021,54(7):198-207.HUA Zhigang,FAN Jiaqing,GUO Rong,et al.Discussion on application of artificial intelligence technology in thermal power industry[J].Electric Power,2021,54(7):198-207.
    [13] 焦筱悛,徐青山.电力系统单用户超短期负荷预测算法研究[J].电测与仪表,2020,57(1):30-35.JIAO Xiaoquan,XU Qingshan.A new ultra-short-term load forecasting algorithm for single user in power system[J].Electrical Measurement & Instrumentation,2020,57(1):30-35.
    [14] XIONG T,LI C,BAO Y.Seasonal forecasting of agricultural commodity price using a hybrid STL and ELM method:Evidence from the vegetable market in China[J].Neurocomputing,2018,275:2831-2844.
    [15] 周一凡,胡伟,闵勇,等.基于省级数据的电力发展水平动态综合评价方法[J].电力系统自动化,2016,40(18):76-83.ZHOU Yifan,HU Wei,MIN Yong,et al.Dynamic comprehensive evaluation method of power industry development level based on provincial data[J].Automation of Electric Power Systems,2016,40(18):76-83.
    [16] ERIC G,JONATHAN B H,KAIJI M.Testing a large set of zero restrictions in regression models,with an application to mixed frequency Granger causality[J].Journal of Econometrics,2020,218(2):633-654.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

严玉婷,薛冰,方力谦,等.基于周期调整负荷成分指数的行业用电大数据价值挖掘[J].电力科学与技术学报,2022,37(6):181-189.
YAN Yuting, XUE Bing, FANG Liqian, et al. Big data mining of industry power consumption based on component index about seasonal-adjusted load[J]. Journal of Electric Power Science and Technology,2022,37(6):181-189.

复制
分享
文章指标
  • 点击次数:142
  • 下载次数: 664
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2023-01-16
文章二维码