基于目标优选和模型预测控制的风储优化策略
作者:
作者单位:

(1.三峡大学电气与新能源学院,湖北 宜昌 443002;2.三峡大学智慧能源技术湖北省工程研究中心,湖北 宜昌 443002;3.宜宾学院智能制造学院,四川 宜宾 644000)

作者简介:

通讯作者:

程 杉(1981—),男,博士,教授,主要从事智能配用电、综合能源系统、新能源微电网研究;E?mail:hpucquyzu@ctgu.edu.cn

中图分类号:

TM863

基金项目:

国家自然科学基金(51607105);四川省重点实验室开放基金(SCITLAB?1009)


Optimally selected objective and model predictive control based optimal strategy of wind power with energy storage
Author:
Affiliation:

(1.College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China; 2.Hubei Provincial Engineering Research Center of Intelligent Energy Technology,China Three Gorges University, Yichang 443002, China; 3.Faculty of Intelligence Manufacturing, Yibin University, Yibin 644000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风储系统风电功率波动平抑效果不佳的问题,对风储系统的运行进行优化。在考虑风储系统运行的时序耦合特性和未来风电功率波动对储能系统的影响下,提出基于平抑目标优选方法和模型预测控制的优化策略。首先根据风电预测功率和储能固有约束求出期望的并网功率,再结合当前的储能荷电状态(SOC)等条件由模糊控制求出优选平抑目标,并引入局部预测准度对其进行修正;然后利用模型预测控制—粒子群优化算法(MPC?PSO)策略滚动优化储能功率,使下一时段并网功率与优选目标功率之差最小且储能充放功率最小;最后基于算例的仿真和对比分析结果可见,所提优化策略既能提升风电波动的平抑效果,又能有效地降低储能运行成本。

    Abstract:

    Aiming at the problem that the wind storage system's power fluctuation suppression effect is unsatisfactory, the wind storage system's operation is optimized. Considering the time series coupling characteristics of wind storage system operation and the influence of future wind power fluctuation on the energy storage system (ESS), an optimization strategy based on stabilizing target optimization method and model predictive control (MPC) is proposed. Firstly, the expected grid?connected power is calculated according to the predicted wind power and the constraints of ESS, and the local prediction accuracy is introduced to correct it. Then, combined with the current state of charge (SOC) of ESS, the optimal stabilization target is obtained by fuzzy control; Lastly, the MPC with particle swarm optimization (MPC?PSO) strategy is used to optimize the ESS power, so as to minimize the difference between the grid?connected power of next time and the optimal target power and minimize the ESS power. The simulation results show that the strategy proposed in this paper has a better wind power fluctuation smoothing effect and can effectively reduce the operation cost of energy storage.

    参考文献
    相似文献
    引证文献
引用本文

严 潇,程 杉,左先旺,等.基于目标优选和模型预测控制的风储优化策略[J].电力科学与技术学报,2023,38(1):1-10.
YAN Xiao, CHENG Shan, ZUO Xianwang, et al. Optimally selected objective and model predictive control based optimal strategy of wind power with energy storage[J]. Journal of Electric Power Science and Technology,2023,38(1):1-10.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-10
  • 出版日期:
文章二维码