基于贝叶斯网络的10 kV线路时钟超差计量点负荷类型识别方法
CSTR:
作者:
作者单位:

(1.四川大学电气工程学院,四川 成都 610065;2.四川国网南充供电局,四川 南充 637001)

通讯作者:

周 群(1966—),女,博士,教授,主要从事电工理论与新技术、新能源与电力电子研究;E?mail: zhouqunsc@163.com

中图分类号:

TM73

基金项目:

国家自然科学基金(51977134)


Load type identification method of 10 kV transmission line clock‑inaccuracy metering point based on bayesian network
Author:
Affiliation:

(1.College of Electrical Engineering, Sichuan University, Chengdu 610065,China;2.Nanchong Power Supply Bureau of Sichuan Power Grid, Nanchong 637001,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | | | |
  • 文章评论
    摘要:

    10 kV线路上负荷计量点处出现时钟超差将导致线损率异常,而现有人工排查方法存在效率低、智能化程度不高的问题。为此,提出一种基于线损率曲线波动特征识别时钟超差计量点负荷类型的新方法,通过贝叶斯网络(BN)拟合负荷类型与时钟超差线损率的映射关系。为解决时钟超差样本缺乏的问题,在基于线路实际运行数据的仿真模型中对负荷计量点分别设置计量时钟偏差模块,生成时钟超差线损率样本集;引入模糊C均值聚类,根据负荷曲线形状相似度对负荷进行归类,在负荷较多的场景中实现数据降维。依托于同期线损系统的研究数据,算例分析验证了该方法的可行性和准确性,说明其可实现时钟超差计量点负荷类型辨识,为快速定位时钟超差异常电能表提供参考。

    Abstract:

    The clock?inaccuracy at the load measuring point on the 10 kV line leads to an abnormal line loss rate, while the existing manual methods have the problems of low efficiency and low intelligence. Therefore, based on the fluctuation characteristics of line loss rate curve, a new method for identifying the load types of clock?inaccuracy metering points is proposed to fit the mapping relationship between load type and the clock?inaccuracy line loss rate by Bayesian network (BN). In order to solve the problem of lack of clock?inaccuracy samples, the metering clock deviation modules are respectively set for the load metering points to generate a sample set of clock?inaccuracy line loss rate in the simulation model based on the actual operation data of the line. The fuzzy C?means clustering is then introduced to classify the load according to the shape similarity of the load curve, and the data dimensionality reduction is realized in scenarios with heavy load. Relying on research data from the synchronous line loss management system, the calculation example verifies the feasibility and accuracy of the proposed method. It is shown that the method can realize load type identification of clock?inaccuracy, and provide a reference for quickly locating the abnormal energy meters.

    参考文献
    [1] 王永明,陈宇星,殷自力,等.基于大数据分析的电力用户行为画像构建方法研究[J].高压电器,2022,58(10):173?179+187. WANG Yongming,CHEN Yuxing,YIN Zili,et al.Research on construction method of power user behavior portrait based on big data analysis[J].High Voltage Apparatus,2022,58(10):173?179+187.
    [2] 段延宁.一体化电量与线损管理信息系统方案设计[D].保定:华北电力大学,2018. DUAN Yanning.The integration of power and line loss management information system design[D].Baoding:North China Electric Power University,2018.
    [3] 唐登平,李俊,孟展,等.统计线损数据准确性研究[J].电力系统保护与控制,2018,46(24):33?39. TANG Dengping,LI Jun,MENG Zhan,et al.Research on accuracy of statistical line losses[J].Power System Protection and Control,2018,46(24):33?39.
    [4] 王永平.台区线损管理与分析[M].北京:中国电力出版社,2020:9?19. WANG Yongping.Line loss management and analysis in substaion area[M].Beijing: China Electric Power Press,2020:9?19.
    [5] 冯凯.同期线损管理系统应用指南[M].北京:中国电力出版社,2019:132?135. FENG Kai.Synchronous line loss management system application guide[M].Beijing:China Electric Power Press,2019:132?135.
    [6] 黄星知,杨奕纯,杨兰,等.基于BP神经网络的配电网防窃电降线损研究[J].电力科学与技术学报,2019,34(4):143?147. HUANG Xingzhi,YANG Yichun,YANG Lan,et al.Study of anti?power theft and line loss reduction for power distribution network based on BP neural network[J].Journal of Electric Power Science and Technology,2019,34(4):143?147.
    [7] 蔡嘉辉.基于数据驱动的线损异常智能分析方法研究及应用[D].无锡:江南大学,2021. CAI Jiahui.Research and application of intelligent analysis method line loss anomaly based on data drive[D].Wuxi: Jiangnan University,2021.
    [8] 陈鑫鑫.基于半监督径向基函数神经网络的统计线损异常诊断方法[D].北京:华北电力大学,2021. CHEN Xinxin.Synchronous statistical line loss anomaly diagnosis method based on semi?supervised radial basis function neural network[D].Beijing: North China Electric Power University,2021.
    [9] 郑惠哲.基于电能量数据管理的线损计算与异常分析[D].广州:华南理工大学,2018. ZHENG Huizhe.Calculation and analysis of power loss based on electric energy data management[D].Guangzhou: South China University of Technology,2018.
    [10] 张斌,李亚云,李玉荣,等.计量自动化系统数据定位配电网线损异常方法[J].云南电力技术,2017,45(6):11?13. ZHANG Bin,LI Yayun,LI Yurong,et al.A new method of abnormal line loss data location based on the data analysis of automated measurement system in distribution system[J].Yunnan Electric Power,2017,45(6):11?13.
    [11] PEARL J.Fusion,Propagation,and structuring in belief networks[J].Artificial Intelligence,1986,29(3):241?288.
    [12] 黄影平.贝叶斯网络发展及其应用综述[J].北京理工大学学报,2013,33(12):1211?1219. HUANG Yingping.Survey on Bayesian Network development and application[J].Transactions of Beijing Institute of Technology,2013,33(12):1211?1219.
    [13] 任鹏哲,刘友波,刘挺坚,等.基于互信息贝叶斯网络的配电网拓扑鲁棒辨识算法[J].电力系统自动化,2021,45(9):55?62. REN Pengzhe,LIU Youbo,LIU Tingjian,et al.Robust identification algorithm for distribution network topology based on mutual?information Bayesian network[J].Automation of Electric Power Systems,2021,45(9):55?62.
    [14] 田英杰,洪子靖,周李.基于函数型数据分析的工商业居民用户电力数据清洗算法[J].电测与仪表,2021,58(1):11?19. TIAN Yingjie,HONG Zijing,ZHOU Li.Data cleaning algorithm for industrial and commercial residential users based on functional data analysis[J].Electrical Measurement & Instrumentation,2021,58(1):11?19.
    [15] 杨清银.电力营销中贝叶斯网络决策分析系统应用研究[D].南京: 东南大学,2019. YANG Qingyin.Decision analysis of bayesian network in power marketing system application research[D].Nanjing: Southeast University,2019.
    [16] 朱保军,咸日常,范慧芳,等.WRSR与改进朴素贝叶斯融合的变压器故障诊断技术研究[J].电力系统保护与控制,2021,49(20):120?128. ZHU Baojun,XIAN Richang,FAN Huifang,et al.Transformer fault diagnosis technology based on the fusion of WRSR and improved naive Bayes[J].Power System Protection and Control,2021,49(20):120?128.
    [17] 马宗彪,许素安,朱少斌,等.基于特征加权模糊聚类的电力负荷分类[J].中国电力,2022,55(6):25?32. MA Zongbiao,XU Su’an, ZHU Shaobin,et al.Power load classification based on feature weighted fuzzy clustering[J].Electric Power,2022,55(6):25?32.
    [18] 吴红,王维平,杨峰.贝叶斯网络参数学习中的连续变量离散化方法[J].系统工程与电子技术,2012,34(10):2157?2162. WU Hong,WANG Weiping,YANG Feng.Discretization method of continuous variables in Bayesian Network parameter learning[J].Systems Engineering and Electronics,2012,34(10):2157?2162.
    [19] 陈芳,张利,韩学山,等.配电网线损概率评估及应用[J].电力系统保护与控制,2014,42(13):39?44. CHEN Fang,ZHANG Li,HAN Xueshan,et al.Line loss evaluation and application in distribution network[J].Power System Protection and Control,2014,42(13):39?44.
    [20] 张鸿勋.基于K2评分的贝叶斯网结构学习算法的研究[D].北京:北京工业大学,2009. ZHANG Hongxun.The research of bayesian network structure learning algorithm based on K2 score metric[D].Beijing:Beijing University of Technology,2009.
    [21] 方紫筠,钱玉良.含有用户自主选择行为分析的电价套餐设计策略[J].智慧电力,2022,50(5):94?99+105. FANG Ziyun,QIAN Yuliang.Design strategy of electricity price package with analysis of user’s independent choice behavior[J].Smart Power,2022,50(5):94?99+105.
    [22] 查园园,王亭岭,上官伟.基于贝叶斯网络的列控车载设备故障诊断[J].北京交通大学学报,2021,45(5):37?45. ZHA Yuanyuan,WANG Tingling,SHANGGUAN Wei.Bayesian network?based fault diagnosis for on?board equipment of train control system[J].Journal of Beijing Jiaotong University,2021,45(5):37?45.
    [23] 杨宏,邓晨成,邹芹,等.居民用电行为分析及潜力研究[J].电力大数据,2020,23(12):80?88. YANG Hong,DENG Chencheng,ZOU Qin,et al.Analysis of residential electricity use behavior and potential research[J].Power Systems and Big Data,2020,23(12):80?88.
    [24] 苏欣,田浩,秦昌龙,等.多变量数据聚类最优选择的用电关联分析算法[J].电网与清洁能源,2022,38(4):86?94+103. SU Xin,TIAN Hao,QIN Changlong,et al.Electricity consumption association analysis algorithm for optimal selection of multivariate data clustering[J].Power System and Clean Energy,2022,38(4):86?94+103.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

青倚帆,周 群,张仁建.基于贝叶斯网络的10 kV线路时钟超差计量点负荷类型识别方法[J].电力科学与技术学报,2023,38(1):122-129.
QING Yifan, ZHOU Qun, ZHANG Renjian. Load type identification method of 10 kV transmission line clock‑inaccuracy metering point based on bayesian network[J]. Journal of Electric Power Science and Technology,2023,38(1):122-129.

复制
分享
文章指标
  • 点击次数:169
  • 下载次数: 684
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2023-04-10
文章二维码