基于类噪声的解耦测辨负荷模型机理分析及应用
CSTR:
作者:
作者单位:

(1.国网江苏省电力有限公司,江苏 南京 210024;2.清华大学电机工程与应用电子技术系,北京 100084;3.上海电力大学电气工程学院,上海 200090)

通讯作者:

周晋航(1997—),男,硕士研究生,主要从事负荷辨识方面研究;E?mail:zjhyddx@163.com

中图分类号:

TM714

基金项目:

国网江苏省电力有限公司科技项目(20192001526)


Mechanism analysis and application of ambient noise decoupling load measurement and identification model
Author:
Affiliation:

(1.State Grid Corporation of Jiangsu Province Nanjing, Nanjing 210024, China;2.Department of Electrical Engineering, Tsinghua University,Beijing 100084, China; 3.Electrical Power Engineering of Shanghai University of Electric Power, Shanghai 200090,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • | | | |
  • 文章评论
    摘要:

    负荷辨识是电力系统仿真的重要环节。为得到准确的负荷辨识动态参数,国内外学者在合理构建辨识模型方面做出了大量深入的研究。首先,在传统负荷模型基础上反推出2种基于类噪声的负荷实时动态参数辨识模型,实现测辨数据在辨识模型计算中的输入数据时序的解耦,同时避免辨识初始物理量冗余性以及辨识量误差迭代放大对参数功率响应能力造成的负面影响。再从类噪声仿真数据和实测数据上验证分析这2种测辨模型的数据功率响应能力。结果显示测辨得到负荷动态参数适用于现在的电力仿真系统,说明此研究能够为进一步研究辨识模型提供新方向,为负荷可控性提供数据基础。

    Abstract:

    Load identification is an important part of power system simulation. In order to obtain accurate load identification dynamic parameters, scholars at home and abroad have done a lot of in-depth research on the reasonable construction of identification models. Firstly, on the basis of the traditional load model, two real-time dynamic parameter identification load models based on ambient noise are deduced, which realizes the decoupling of the input data sequence of the measurement and identification data in the calculation of the identification model. At the same time, it avoids the negative impact of the identification of the initial physical quantity redundancy and the iterative amplification of the identification quantity error on the parameter power response capability. Then, the data power response capability of the two measurement and identification models is verified and analyzed from the ambient noise simulation data and the actual measurement data. The results show that the load dynamic parameters measured and identified are applicable to the current power simulation system, indicating that the research can provide a new direction for further research on the identification model and provide a data basis for load controllability.

    参考文献
    [1] 洪志鹏,马进,贺仁睦,等.一种新的简化负荷模型结构[J].现代电力,2008,25(3):1?7. HONG Zhipeng,MA Jin,HE Renmu,et al.New structure of simplified load model[J].Modern Electric Power,2008,25(3):1?7.
    [2] 王琦,张文朝,汤涌,等.统计综合法负荷建模中的调查方法及应用[J].电网技术,2010,34(2):104?108. WANG Qi, ZHANG Wenchao, TANG Yong,et al.A new load survey method and its application in component based load modeling[J].Power System Technology,2010,34(2):104?108.
    [3] PIERRE J W,TRUDNOWSKI D J,DONNELLY M K.Initial results in electromechanical mode identification from ambient data[J].IEEE Transactions on Power Systems,1997,12(3):1245?1251.
    [4] 曹一家,李大虎.基于广域测量系统的大区域电网负荷建模的研究[J].电力科学与技术学报,2007,22(2):1?7. CAO Yijia,LI Dahu.Study on large?scale grid load modeling based on wide?area measurement system[J].Journal of Electric Power Science and Technology,2007,22(2):1?7.
    [5] 陆臣斌,包哲静,于淼,等.基于改进自适应构造区间法的电力负荷区间预测[J].电测与仪表,2022,59(11):34?41. LU Chenbin,BAO Zhejing,YU Miao,et al.Power load interval prediction based on improved adaptively constructed intervaloptimization method[J].Electrical Measurement & Instrumentation,2022,59(11):34?41.
    [6] ZHANG X,LU C,HAN Y D,et al.Ambient signal based load model parameter identification using optimization method[C]//2015 IEEE Power & Energy Society General Meeting,Denver,USA,2015.
    [7] 王凇瑶,张智晟.基于量子加权多层级GRU神经网络的综合能源系统多元负荷短期预测[J].电力系统保护与控制,2022,50(23):85?93. WANG Songyao,ZHANG Zhisheng.Short?term multivariate load forecasting of an integrated energy system based on a quantum weighted multi?hierarchy gated recurrent unit neural network[J].Power System Protection and Control,2022,50(23):85?93.
    [8] 孙华东,周孝信,李若梅.感应电动机负荷参数对电力系统暂态电压稳定性的影响[J].电网技术,2005,29(23):1?6. SUN Huadong,ZHOU Xiaoxin,LI Ruomei.Influence of induction motor load parameters on power system transient voltage stability[J].Power System Technology,2005,29(23):1?6.
    [9] 吴小钊,李俊豪,付鲁军,等.C4F7N/CO2环保混合气体在去离子栅式负荷开关中的开断特性[J].高压电器,2021,57(3):48?53. WU Xiaozhao,LI Junhao,FU Lujun,et al.Breaking characteristics of eco?friendly C4F7N/CO2 gas mixture in splitter arc extinction type load switch[J].High Voltage Apparatus,2021,57(3):48?53.
    [10] 朱溪,曾博,徐豪,等.一种面向配电网负荷恢复力提升的多能源供需资源综合配置优化方法[J].中国电力,2021,54(7):46?55. ZHU Xi,ZENG Bo,XU Hao,et al.An integrated optimal allocation method of multi?energy supply and demand side resources for load resilience enhancement of distribution system[J].Electric Power,2021,54(7):46?55.
    [11] 鞠平,马大强.电力系统负荷建模(第二版)[M].北京:中国电力出版社,2008:76?78. JU Ping,MA Daqiang.Power system load modeling(second edition)[M].Beijing:China Electric Power Press,2008:76?78.
    [12] 李欣,刘晨凯,郭攀锋,等.考虑拓扑变化的电力系统暂态稳定评估[J].智慧电力,2021,49(12):59?65. LI Xin,LIU Chenkai,GUO Panfeng,et al.Transient stability assessment of power system considering change in network topology[J].Smart Power,2021,49(12):59?65.
    [13] 贺强,张轶,刘旸,等.考虑用户舒适度的需求侧负荷转移策略[J].电网与清洁能源,2021,37(5):43?51. HE Qiang,ZHANG Yi,LIU Yang,et al.Demand side load transfer strategy considering user comfort[J].Power System and Clean Energy,2021,37(5):43?51.
    [14] 王金铭,高键.基于PSAT的电力系统时域仿真研究[J].科学技术与工程,2008,8(17):4802?4805. WANG Jinming,GAO Jian.Research of power system time domain simulation based on PSAT[J].Science Technology and Engineering,2008,8(17):4802?4805.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐 贤,周晋航,王 颖,等.基于类噪声的解耦测辨负荷模型机理分析及应用[J].电力科学与技术学报,2023,38(1):138-145.
XU Xian, ZHOU Jinhang, WANG Ying, et al. Mechanism analysis and application of ambient noise decoupling load measurement and identification model[J]. Journal of Electric Power Science and Technology,2023,38(1):138-145.

复制
分享
文章指标
  • 点击次数:186
  • 下载次数: 689
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2023-04-10
文章二维码