一种新的基于深度置信网络的电能质量扰动分类方法
CSTR:
作者:
作者单位:

(长沙理工大学电气与信息工程学院,湖南 长沙 410114)

通讯作者:

席燕辉(1979—),女,博士,副教授,主要从事复杂系统建模研究;E?mail:xiyanhui@126.com

中图分类号:

TM743

基金项目:

国家自然科学基金(51507015,61673388);湖南省自然科学基金(2018JJ2439);湖南省教育厅优秀青年项目(18B130)


A novel classificiation method for power quality disturbance based on deep belief network
Author:
Affiliation:

(School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    针对在噪声干扰下多重扰动识别正确率不高的问题,提出一种新的基于深度置信网络的电能质量扰动分类方法。首先,对电能质量扰动信号进行平稳小波多尺度变换,再利用软阈值函数处理估计小波系数重构原始信号,从而实现对电能质量扰动信号的去噪。再利用软阈值函数处理估计小波系数重构原始信号,从而实现对电能质量扰动信号的去噪。然后进一步提出利用深度置信网络对重构后的单一扰动信号和多重扰动信号进行分类识别。最后算例显示,即使在20 dB噪声干扰下,其分类正确率高达到93%以上。结果表明该方法对7种单一扰动和13种多重扰动信号的识别正确率均较高,验证该方法具有较强的抗噪声干扰能力。

    Abstract:

    Aiming at the problem that the recognition accuracy of multiple disturbances is not high under noise interference, a new classification method of power quality disturbances based on deep belief network is proposed. Firstly, the stationary wavelet multi?scale transformation is performed on the power quality disturbance signal, and then the soft threshold function is used to process the estimated wavelet coefficients to reconstruct the original signal, thereby realizing the denoising of the power quality disturbance signal. Moreover, it is further proposed to use the deep belief network to classify and identify the reconstructed single disturbance signal and multiple disturbance signals. The calculation example shows that even under the interference of 20 dB noise, the classification accuracy rate is as high as 93%. The results show that the recognition accuracy of the method is high for 7 kinds of single disturbance and 13 kinds of multiple disturbance signals, which verifies that the method has strong anti?noise interference ability.

    参考文献
    [1] 曹思杨,戴朝华,朱云芳,等.一种新的电能质量扰动信号压缩感知识别方法[J].电力系统保护与控制,2017,45(3):7?12. CAO Siyang,DAI Chaohua,ZHU Yunfang,et al.A novel compressed sensing?based recognition method for power quality disturbance signals[J].Power System Protection and Control,2017,45(3):7?12.
    [2] 王仁明,汪宏阳,张赟宁,等.基于分段改进S变换和随机森林的复合电能质量扰动识别方法[J].电力系统保护与控制,2020,48(7):19?28. WANG Renming,WANG Hongyang,ZHANG Yunning,et al.Composite power quality disturbance recognition based on segmented modified S?transform and random forest[J].Power System Protection and Control,2020,48(7):19?28.
    [3] 杨剑锋,姜爽,石戈戈.基于分段改进S变换的复合电能质量扰动识别[J].电力系统保护与控制,2019,47(9):64?71. YANG Jianfeng,JIANG Shuang,SHI Gege.Classification of composite power quality disturbances based on piecewise?modified S transform[J].Power System Protection and Control,2019,47(9):64?71.
    [4] 关维国,姚清志,高阳,等.基于db4小波的配电网暂态电能质量扰动的检测与定位[J].电力系统保护与控制,2015,43(8):102?106. GUAN Weiguo,YAO Qingzhi,GAO Yang,et al.Transient power quality detection and location of distribution network based on db4 wavelet transform[J].Power System Protection and Control,2015,43(8):102?106.
    [5] 陈和洋,郑文迪,吴文宣.采用直流分量恢复法的直流系统谐波分析[J].电测与仪表,2021,58(1):96?103. CHEN Heyang,ZHENG Wendi,WU Wenxuan.Harmonic analysis of DC system using DC component recovery method[J].Electrical Measurement & Instrumentation,2021,58(1):96?103.
    [6] 张杨,刘志刚.EEMD在电能质量扰动检测中的应用[J].电力自动化设备,2011,31(12):86?91. ZHANG Yang,LIU Zhigang,Application of EEMD in power quality disturbance detection[J].Electric Power Automation Equipment,2011,31(12):86?91.
    [7] WU J F,LI Y Z,QUEVEDO D E,et al.Data?driven power control for state estimation:a bayesian inference approach[J].Automatica,2015,54:332?339.
    [8] 赵洛印,庄磊,丁建顺,等.基于S&TT变换与PSO?SVMs的电能质量混合扰动识别[J].电测与仪表,2020,57(4):78?86. ZHAO Luoyin,ZHUANG Lei,DING Jianshun,et al.Identification of power quality hybrid disturbances based on S&TT transform and PSO?SVMs[J].Electrical Measurement & Instrumentation,2020,57(4):78?86.
    [9] 马翔匀,鲍颜红,张金龙,等.基于支持向量机和决策函数的暂态稳定评估方法[J].电测与仪表,2019,56(23):48?53. MA Xiangyun,BAO Yanhong,ZHANG Jinlong,et al.Transient stability assessment based on support vector machine and decision function[J].Electrical Measurement & Instrumentation,2019,56(23):48?53.
    [10] 张巧革,刘志刚,朱玲,等.基于多标签Rank?WSVM的复合电能质量扰动分类[J].中国电机工程学报,2013,33(28):114?120. ZHANG Qiaoge,LIU Zhigang,ZHU Ling,et al.Recognitionof multiple power quality disturbances using multi?label wavelet support vector machine[J].Proceedings of the CSEE,2013,33(28):114?120.
    [11] KUMAR R,SINGH B,SHAHANI D T,et al.Recognition of power?quality disturbance using S?transform?based ANN classifier and rule?based decision tree[J].IEEE Transactions on Industry Applications,2015,51(2):1249?1258.
    [12] DALAI S,DEY D,CHATTERJEE B,et al.Cross?spectrum analysis?based scheme for multiple power quality disturbance sensing device[J].IEEE Sensors Journal,2015,15(7):3989?3997.
    [13] KUBENDRAN A K,LOGANATHAN A K.Detection and classification of complex power quality disturbances using S?transform amplitude matrix?based decision tree for different noise levels[J].International Transactions on Electrical Energy Systems,2017,27(4):e2286.
    [14] 陈伟,何家欢,裴喜平,等.深度信念网络在电能质量复合扰动识别中的应用[J].电力系统及其自动化学报,2018,30(9):75?82. CHEN Wei,HE Jiahuan,PEI Xiping,et al.Application of deep belief network in power quality compound disturbance identification[J].Proceedings of the CSU?EPSA,2018,30(9):75?82.
    [15] 吴兆刚,李唐兵,姚建刚,等.基于小波变换和改进神经树的电能质量扰动分类[J].电力系统保护与控制,2014,42(24):86?92. WU Zhaogang,LI Tangbing,YAO Jiangang,et al.Power quality disturbance classification based on a wavelet and improved neural tree[J].Power System Protection and Control,2014,42(24):86?92.
    [16] 马建,陈克绪,肖露欣,等.基于受限玻尔兹曼机的电能质量复合扰动识别[J].南昌大学学报(理科版),2016,40(1):30?34. MA Jian,CHEN Kexu,XIAO Luxin,et al.Classification on mixed disturbances of power quality based on restricted Boltzmann machine[J].Journal of Nanchang University(Natural Science),2016,40(1):30?34.
    [17] 黄建招,谢建,高钦和,等.基于改进阈值的平移不变小波压力脉动去噪研究[J].机床与液压,2012,40(15):161?164+144. HUANG Jianzhao,XIE Jian,GAO Qinhe,et al.Research of pressure fluctuation signal denoising based on translation invariance wavelet and improved threshold method[J].Machine Tool & Hydraulics,2012,40(15):161?164+144.
    [18] 邬春明,谢妮娜.改进的小波阈值在电能质量信号去噪中的应用[J].计算机工程与应用,2012,48(3):114?116. WU Chunming,XIE Nina.Application of improved wavelet threshold in power qualitysignal denoising[J].Computer Engineering and Applications,2012,48(3):114?116.
    [19] 刘卫东,刘尚合,胡小锋,等.小波阈值去噪函数的改进方法分析[J].高电压技术,2007,33(10):59?63. LIU Weidong,LIU Shanghe,HU Xiaofeng,et al.Analysis of modified methods of wavelet threshold de?nosing function[J].High Voltage Engineering,2007,33(10):59?63.
    [20] 吴志宇,朱云芳,侯怡爽,等.电能质量扰动识别的小波压缩感知方法[J].电力系统及其自动化学报,2019,31(5):1?7. WU Zhiyu,ZHU Yunfang,HOU Yishuang,et al.Power quality disturbance recognition method based on wavelet compressive sensing[J].Proceedings of the CSU?EPSA,2019,31(5):1?7.
    [21] 王维博,董蕊莹,曾文入,等.基于改进阈值和阈值函数的电能质量小波去噪方法[J].电工技术学报,2019,34(2):409?418. WANG Weibo,DONG Ruiying,ZENG Wenru,et al.A wavelet de?noising method for power quality based on an improved threshold and threshold function[J].Transactions of China Electrotechnical Society,2019,34(2):409?418.
    [22] 王宏伟,荣航,孙朋.Coif5小波在煤岩声发射源定位中的应用研究[J].计算机工程与应用,2014,50(23):215?219. WANG Hongwei,RONG Hang,SUN Peng.Research on application of Coif5 wavelet to locate acoustic emission source in coal?rock[J].Computer Engineering and Applications,2014,50(23):215?219.
    [23] 朱云芳,吴志,高岩,等.多尺度稀疏的电能质量扰动深度识别方法[J].西南交通大学学报,2020,55(1):18?26. ZHU Yunfang,WU Zhiyu,GAO Yan,et al.Recognition method for multi?scale sparse power quality disturbance[J].Journal of Southwest Jiaotong University,2020,55(1):18?26.
    [24] 李丹奇,梅飞,张宸宇,等.基于深度置信网络的电压暂降特征提取及源辨识方法[J].电力系统自动化,2020,44(4):150?1158. LI Danqi,MEI Fei,ZHANG Chenyu,et al.Deep belief network based method for feature extraction and source identification of voltage sag[J].Automation of Electric Power Systems,2020,44(4):150?158.
    [25] 徐春华,陈克绪,马建,等.基于深度置信网络的电力负荷识别[J].电工技术学报,2019,34(19):4135?4142. XU Chunhua,CHEN Kexu,MA Jian,et al.Recognition of power loads based on deep belief network[J].Transactions of China Electrotechnical Society,2019,34(19):4135?4142.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王 康,席燕辉,胡 康.一种新的基于深度置信网络的电能质量扰动分类方法[J].电力科学与技术学报,2023,38(1):171-177.
WANG Kang, XI Yanhui, HU Kang. A novel classificiation method for power quality disturbance based on deep belief network[J]. Journal of Electric Power Science and Technology,2023,38(1):171-177.

复制
分享
文章指标
  • 点击次数:211
  • 下载次数: 929
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2023-04-10
文章二维码