基于Attention机制的CNN‑GRU配网线路重过载短期预测方法
作者:
作者单位:

(1.上海电力大学电气工程学院,上海 200090;2.国网上海市电力公司电力科学研究院,上海 200080;3.国网新疆电力有限公司电力科学研究院,新疆 乌鲁木齐 830002)

作者简介:

通讯作者:

胡钟毓(1995—),女,硕士研究生,主要从事电力大数据和人工智能技术研究;E?mail:huzhongyu@mail.shiep.edu.cn

中图分类号:

TM726

基金项目:

国家自然科学基金(51907114);上海电力人工智能工程技术研究中心研究项目(19DZ2252800)


Short‑term heavy overload forecasting method of distribution net line based on CNN‑GRU with Attention mechanism
Author:
Affiliation:

(1.Electric Power Engineering of Shanghai University of Electric Power, Shanghai 200090, China; 2.State Grid Shanghai Electrical Power Research Institute, Shanghai 200080, China; 3.State Grid Xinjiang Electrical Power Research Institute, Urumqi 830002, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着用户用电需求增加,迎峰度夏期间配网线路重过载较严重,为电网运行增加安全隐患。实现配网线路重过载短期预测,对合理安排负荷高峰时期运行方式和调度管理以及线路的安全运行具有重要意义。文中提出一种基于注意力(Attention)机制的卷积神经网络(CNN)—门限循环单元神经网络(GRU)组合预测模型。结合高相关性时间段的历史线路负载率数据和气象因素作为输入特征,利用CNN处理多源数据并提取有效特征作为GRU的输入,再通过GRU对时序特征集进行分析预测,利用Attention机制对重要数据分配更多的注意力权重,实现配网线路负载率的回归预测,最后根据负载等级划分标准将负载率预测结果转化为负载等级。使用所提方法对上海市某区某10 kV线路数据进行实验。实验结果表明,该预测方法比相同模型结构但以负载等级为输入的重过载分类预测,更适用于配网线路重过载预测。

    Abstract:

    With the increase of electricity demand, the heavy overload of distribution network lines during the peak period of electricity consumption becomes more serious, which increases the potential threats on the safety of grid operation. The short?term forecast of the heavy overload state of distribution lines is of great significance for rationally arranging the operation mode, for dispatch management, and for the safety operation of the line during peak load periods. This paper proposes a short?term forecast method for the heavy overload state of lines and a prediction model that CNN?GRU hybrid neural network with Attention mechanism. The historical load rate of lines with high auto?correlation and meteorological factors are combined as the input features, which is further used to extract the valid features by the CNN. The GRU neural network is utilized to analyze and predict time series data. By using the Attention mechanism to reassign corresponding weights, the load rate regression prediction result can be outputed,which can be finally converted into the load level according to the load level division standard. The method in this paper is performed on a 10kV line in a certain district of Shanghai. The experimental results show that this prediction method is more suitable for line heavy overload prediction than the method using the classification prediction model with the same model structure but with load level as input.

    参考文献
    相似文献
    引证文献
引用本文

杨 秀,胡钟毓,田英杰,等.基于Attention机制的CNN‑GRU配网线路重过载短期预测方法[J].电力科学与技术学报,2023,38(1):201-209.
YANG Xiu, HU Zhongyu, TIAN Yingjie, et al. Short‑term heavy overload forecasting method of distribution net line based on CNN‑GRU with Attention mechanism[J]. Journal of Electric Power Science and Technology,2023,38(1):201-209.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-10
  • 出版日期:
文章二维码