基于CNN‑LSTM混合模型的多类别窃电行为检测
作者:
作者单位:

(广西电网有限责任公司计量中心,广西 南宁 530023)

作者简介:

通讯作者:

陈珏羽(1992—),女,硕士,主要从事电能计量研究;E?mail: jueyuchen@qq.com

中图分类号:

TM73

基金项目:

广西电网有限责任公司科技项目(GXKJXM20200020);国家自然科学基金(51777061)


Multi‑class electricity theft detection based on the CNN‑LSTM hybrid model
Author:
Affiliation:

(Measurement Center of Guangxi Power Grid Co.,Ltd.,Nanning 530023,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂电网环境下窃电行为难以准确检测的问题,提出一种基于CNN?LSTM混合模型的多类别窃电行为检测方法。首先基于卷积神经网络(CNN)良好的特征抽象能力提取一维用电数据的非周期性的局部特征,通过长短时记忆网络(LSTM)捕捉每日电能消耗数据间的相关性,提取周期性的用电特征建立特征融合层网络,再将CNN与LSTM提取的特征向量横向拼接获得新的融合向量,据此实现多类别窃电行为的准确检测。实验结果表明,本文提出方法能准确识别多类别窃电行为,相比现有检测方法检测结果更加全面准确。

    Abstract:

    This paper addresses the difficulty of the accurately detecting electricity theft in complex grid environment and proposes a multi?category electricity theft detection method based on CNN?LSTM hybrid model. Firstly, the excellent feature abstraction ability of convolutional neural networks (CNN) is utilized to extract the non?periodic local features of one?dimensional electricity consumption data. Then, the long short?term memory (LSTM) is adopted to capture the correlation between daily power consumption data and extract periodic power consumption features to establish feature fusion layer network. After that, the feature vectors extracted by CNN and LSTM are horizontally splicing to obtain a new fusion vector. Based on this, the accurate detection of multiple types of electric theft behavior are realized. Experimental results show that the proposed method can accurately identify multiple types of electric theft behavior, and the detection results are more comprehensive and accurate than the existing detection methods.

    参考文献
    相似文献
    引证文献
引用本文

李金瑾,陈珏羽,黄柯颖.基于CNN‑LSTM混合模型的多类别窃电行为检测[J].电力科学与技术学报,2023,38(1):226-234.
LI Jinjin, CHEN Jueyu, HUANG Keying. Multi‑class electricity theft detection based on the CNN‑LSTM hybrid model[J]. Journal of Electric Power Science and Technology,2023,38(1):226-234.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-10
  • 出版日期:
文章二维码