基于改进人工鱼群优化算法的配网故障定位研究
作者:
作者单位:

(国网石家庄供电公司,河北 石家庄 050051)

作者简介:

通讯作者:

武 剑(1979—),男,本科,高级工程师,主要从事继电保护自动化、新能源并网研究;E?mail:3516993157@qq.com

中图分类号:

TM76

基金项目:

国网河北省电力有限公司科技项目(KJ2018?059Ⅱ)


A location approach for distribution network faults based on the enhanced artificial fish swarm optimization
Author:
Affiliation:

(State Grid Shijiazhuang Electric Power Supply Company, Shijiazhuang 050051,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    配网作为直接面向用户的最前端,其稳定安全运行直接关系到用户的用电安全性与可靠性。然而10 kV配网通常分支较多,线路环境复杂,线路发生故障时难以确定具体位置,影响供电可靠性。针对这一问题,利用粒子群(PSO)算法改进人工鱼群算法(AFSA),形成改进人工鱼群优化算法(AFSA?PSO),通过算例验证AFSA?PSO算法的可行性,最后应用于标准配网模型,验证其实用性与优越性。结果表明:AFSA?PSO算法能够准确反应配网中的单点故障和多重故障,且相较于AFSA和PSO算法,该算法寻优的平均迭代次数更短,具有更快的收敛速度。

    Abstract:

    As the front end for users, the stable and safe operation of distribution networks are directly related to the reliable power supplies. However, the large amount of branches in 10 kV distribution networks makes the transmission conditions more complicated. When a fault occurs, it is difficult to determine its specific location, which will affect the power supply. In order to solve this, this paper uses particle swarm optimization (PSO) to improve artificial fish swarm optimization (AFSA). The feasibility of AFSA?PSO algorithm is tested by a case study, where it is applied in a standard distribution network model to verify its practicality and superiority. The results show that the AFSA?PSO algorithm can accurately reflect the single and multiple point failures in distribution networks, and this algorithm is better in both iteration times and convergence speed.

    参考文献
    相似文献
    引证文献
引用本文

武 剑,薛玉石,山春凤,等.基于改进人工鱼群优化算法的配网故障定位研究[J].电力科学与技术学报,2023,38(2):40-47.
WU Jian, XUE Yushi, SHAN Chunfeng, et al. A location approach for distribution network faults based on the enhanced artificial fish swarm optimization[J]. Journal of Electric Power Science and Technology,2023,38(2):40-47.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-29
  • 出版日期:
文章二维码