基于背景数据增强和改进YOLOv4的断路器试验机器人接线定位方法
CSTR:
作者:
作者单位:

(广东电网有限责任公司佛山供电局,广东 佛山 528000)

通讯作者:

王俊波(1986—),男,硕士,高级工程师,主要从事高压试验及状态监测等研究;E?mail:honeymoon651@126.com

中图分类号:

TM561.2

基金项目:

广东电网有限责任公司科技项目(GDKJXM20182372)


Wiring locating method for circuit breaker test robot based on background augmentation and improved YOLOv4
Author:
Affiliation:

(Foshan Power Supply Bureau,Guangdong Power Grid Co.,Ltd.,Foshan 528000, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    为提高断路器试验机器人接线的准确性和可靠性,以双目视觉和深度学习目标检测技术为基础,提出一种基于背景数据增强和改进YOLOv4的断路器试验机器人接线定位方法。该方法利用本文提出的背景混合剪切的数据增强方法,解决因断路器训练图像背景特征不足而导致所训练的目标检测模型泛化能力和准确率低的问题,可以极大地提高不同试验场所(背景)和人员走动等背景扰动下机器人接线的准确性和可靠性;将标准YOLOv4的特征网络CSPDarknet?53替换为Mobiledets,可以优化目标检测模型的推理时间,提高机器人接线效率。仿真结果表明,本文方法的准确率为99.9%;实测结果表明,接线准确率为98.8%,全项目试验接线时间减少了57 s。通过对比分析,本文方法在接线准确率和时间上优于其他方法,可为断路器机器人试验平台的实用化提供技术支持。

    Abstract:

    In order to improve the accuracy and reliability of circuit breaker test robot wiring, a locating method with background augmentation and improved YOLOv4 on the basis of binocular vision and deep learning object detection technology is proposed in this paper. Background mixed shear method is adopted in the proposed method to solve the low generalization ability and accuracy problems caused by insufficient training background features. Therefore, the accuracy and reliability of wiring under the background disturbance such as different test sites and people walking are increased. Furthermore, the backbone of YOLOv4 is replaced to Mobiledets to optimize the reasoning period of the object detection model. So that the efficiency of robot wiring is improved. Simulation and test results show that the accuracy of detection model based on the proposed method is 99.9%, the robot wiring accuracy is 98.8%, and the wiring time is reduced by 57 s. Comparison and analysis indicate that, the method proposed in this paper is superior to other methods in robot wiring accuracy and time, which can provide technical support for the practicability of breaker robot test platform.

    参考文献
    [1] 刘俊明,孟卫华.基于深度学习的单阶段目标检测算法研究综述[J].航空兵器,2020,27(3):44?53. LIU Junming,MENG Weihua.A review of single?stage object detection algorithm based on deep learning[J].Aero Weaponry,2020,27(3):44?53.
    [2] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//14th European Conference on Computer Vision,Amsterdam,Netherlands,2016.
    [3] LIN T Y,GOYAL P,GIRSHICK R.et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318?327.
    [4] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real?time object detection[C]//29th IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Las Vegas,NV,United States,2016.
    [5] 张廷锋,陶熠昆,何凛,等.基于遗传算法的电力巡检机器人作业调度优化方法[J].电网与清洁能源,2022,38(3):68?73. ZHANG Tingfeng,TAO Yikun,HE Lin,et al.A genetic algorithm?based optimization method for job scheduling of electric power inspection robots[J].Power System and Clean Energy,2022,38(3):68?73.
    [6] 赵永良,付鑫,郭阳,等.基于深度学习和图像识别的电力配件智能出入库[J].中国电力,2021,54(3):55?60. ZHAO Yongliang,FU Xin,GUO Yang,et al.Intelligent storage and retrieval of power accessories based on deep learning and image recognition[J].Electric Power,2021,54(3):55?60.
    [7] 郑含博,李金恒,刘洋,等.基于改进YOLOv3的电力设备红外目标检测模型[J].电工技术学报,2021,36(7):1389?1398. ZHENG Hanbo,LI Jinheng,LI Yang,et al.Infrared object detection model for power equipment based on improved YOLOv3[J].Transactions of China Electrotechnical Society,2021,36(7):1389?1398.
    [8] 王滢暄,宋焕生,梁浩翔,等.基于改进的YOLOv4高速公路车辆目标检测研究[J].计算机工程与应用,2021,57(13):218?226. WANG Yingxuan,SONG Huansheng LIANG Haoxiang,et al.Highway vehicle object detection based on an improved YOLOv4 method[J].Computer Engineering and Applications,2021,57(13):218?226.
    [9] 唐小煜,黄进波,冯洁文,等.基于U?net和YOLOv4的绝缘子图像分割与缺陷检测[J].华南师范大学学报(自然科学版),2020,52(6):15?21. TANG Xiaoyu,HUANG Jinbo,FENG Jiewen,et al.Image segmentation and defect detection of insulators based on U?net and YOLOv4[J].Journal of South China Normal University(Natural Science Edition),2020,52(6):15?21.
    [10] 唐翔翔,沈薇,朱明,等.基于改进YOLOv4的输电线路异物检测算法[J].安徽大学学报(自然科学版),2021,45(5):58?63. TANG Xiangxiang,SHEN Wei,ZHU Ming,et al.The foreign object detecting algorithm for transmission lines based on the improved YOLOv4[J].Journal of Anhui University(Natural Science Edition),2021,45(5):58?63.
    [11] 罗潇,於锋,彭勇.基于深度学习的无人机电网巡检缺陷检测研究[J].电力系统保护与控制,2022,50(10):132?139. LUO Xiao,YU Feng,PENG Yong,et al.UAV power grid inspection defect detection based on deep learning[J].Power System Protection and Control,2022,50(10):132?139.
    [12] DEVRIES T,TAYLOR G W.Improved regularization of convolutional neural networks with cutout[EB/OL].https://doi.org/10.48550/arXiv.1708.04552,2017?08?15.
    [13] 文刚,夏宋鹏程,周仿荣,等.面向巡检机器人多源融合鲁棒定位与高逼真仿真方法[J].智慧电力,2022,50(4):110?116. WEN Gang,XIA Songpengcheng,ZHOU Fangrong,et al.Multi?source fusion robust positioning and high?fidelity simulation method for inspection robots[J].Smart Power,2022,50(4):110?116.
    [14] 叶海加,陈罡,邢渊.双目CCD结构光三维测量系统中的立体匹配[J].光学精密工程,2004,12(1):71?75. YE Haijia,CHEN Gang,XING Yuan.Stereo matching in 3D measurement system using double CCD structured light[J].Optics and Precision Engineering,2004,12(1):71?75.
    [15] 董诗绘,牛彩雯,戴琨.基于深度强化学习的变电站巡检机器人自动化控制方法研究[J].高压电器,2021,57(2):172?177. DONG Shihui,NIU Caiwen,DAI Kun.Study on automatic control method of substation inspection robot based on deep reinforcement learning[J].High Voltage Apparatus,2021,57(2):172?177.
    [16] 刘学华, 孔霄迪.基于卷积神经网络的N?2线路开断潮流快速计算[J].电力工程技术, 2021,40(4):95?100. LIU Xuehua, KONG Xiaodi.Fast load flow calculation of N?2 contingency based on convolutional neural network[J].Electric Power Engineering Technology, 2021, 40(4): 95?100.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何胜红,吴小平,王俊波,等.基于背景数据增强和改进YOLOv4的断路器试验机器人接线定位方法[J].电力科学与技术学报,2023,38(2):196-204,239.
HE Shenghong, WU Xiaoping, WANG Junbo, et al. Wiring locating method for circuit breaker test robot based on background augmentation and improved YOLOv4[J]. Journal of Electric Power Science and Technology,2023,38(2):196-204,239.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2023-06-29
文章二维码