基于门控时空图神经网络的电力系统暂态稳定评估
作者:
作者单位:

(上海电力大学电气工程学院,上海 200090)

作者简介:

通讯作者:

刘建锋(1968—),男,博士,副教授,主要从事光电互感器、电气信息检测研究;E?mail:bansen@sina.com

中图分类号:

TM470

基金项目:

国家自然科学基金青年科学基金(51807114)


Power system transient stability assessment based on gating spatial temporal graph neural network
Author:
Affiliation:

(College of Electric Power Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着特高压交直流互联规模的不断扩大,在线高精度快速地暂态稳定评估对电网安全运行至关重要。为此,提出一种基于门控时空图神经网络的暂态稳定评估方法,并采用时间自适应方法,同时提高暂态稳定评估的准确度和速度。首先,为减小故障切除后动态拓扑结构对暂态稳定评估影响,使用门控时空图神经网络提取融合电网的拓扑结构关键特征和相邻节点属性信息,学习空间数据相关性、提高评估准确度。然后,将提取的特征量输入门控神经网络以学习各个时刻数据相关性,调整稳定性阈值快速输出准确评估结果;同时,为避免模型性能受训练样本质量的影响,采用具有K最近邻思想的改进加权交叉熵损失函数处理不平衡训练样本。最后,通过分析算例,从数据可视化视图验证所提出的方法能有效提高评估准确度和缩短评估时间。

    Abstract:

    With the continuous expansion of UHV AC/DC interconnection scale, on?line high?precision and fast transient stability assessment (TSA) is very important for the safe operation of power grid. To this end, a TSA method based on gating spatial temporal graph neural network (GSTGNN) is proposed and the time adaptive method is used to improve the accuracy and speed of TSA at the same time. Firstly, in order to reduce the impact of dynamic topology on TSA after fault removal, GSTGNN is used to extract and fuse the key features of topology and attribute information of adjacent nodes to learn the spatial data correlation and improve the evaluation accuracy. Then, the extracted features are input into the gated recurrent unit (GRU) to learn the correlation of data at each time, and adjust the stability threshold to quickly output accurate evaluation results. Meanwhile, in order to avoid the influence of the quality of training samples, the improved weighted cross entropy loss function with K nearest neighbor (KNN) idea is used to deal with the unbalanced training samples. Through the analysis of an calculation example, it is verified from the data visualization that TSA method can effectively improve assessment accuracy and shorten assessment time.

    参考文献
    相似文献
    引证文献
引用本文

刘建锋,姚晨曦,陈乐乐.基于门控时空图神经网络的电力系统暂态稳定评估[J].电力科学与技术学报,2023,38(2):214-223.
LIU Jianfeng, YAO Chenxi, CHEN Lele. Power system transient stability assessment based on gating spatial temporal graph neural network[J]. Journal of Electric Power Science and Technology,2023,38(2):214-223.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-29
  • 出版日期:
文章二维码