大规模空调负荷参与新能源电力系统调频的无模型自适应控制方法
CSTR:
作者:
作者单位:

(国网江苏省电力有限公司营销服务中心,江苏 南京 211103)

通讯作者:

杨世海(1976—),男,硕士,高级工程师,主要从事需求侧资源优化、电测量与系统分析技术研究;E?mail: ysh.young@163.com

中图分类号:

TM464

基金项目:

国家电网有限公司科技项目(J2021152)


Model‑free adaptive frequency control of renewable energy power systems with participation of large‑scale air conditioner loads
Author:
Affiliation:

(Marketing Service Center, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210036, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    针对大规模空调负荷参与新能源电力系统的调频问题,提出了一种基于无模型自适应控制的频率调节方法。首先,建立了包含大规模风力发电的多区域互联电网模型,风力发电系统通过虚拟惯量控制参与电网调频;其次,采用等效热力学参数模型构建了定频和变频空调模型,通过大规模空调聚合建立了空调负荷调频模型;然后,利用无模型自适应控制算法完全数据驱动、无需模型参数、抗干扰能力强、适用于非线性时变系统的特点,设计了区域互联电网自动发电控制器以及空调控制器,实现了大规模空调负荷参与新能源电力系统的频率控制。算例仿真在三区域互联电力系统展开,在负荷扰动、风电波动和环境温度变化等条件下进行的仿真表明:提出的无模型自适应频率控制算法能够控制大规模空调负荷有效抑制风电接入和负荷扰动带来的频率波动。

    Abstract:

    Aiming at the problem of large?scale air conditioner loads participating in the frequency regulation of renewable energy power systems, a frequency regulation method based on model?free adaptive control (MFAC) is proposed. Firstly, a multiarea interconnected power grid model including large?scale wind power generation is established. The wind power generation system participates in power grid frequency regulation through virtual inertia control. Secondly, the equivalent thermodynamic parameter (ETP) model is used to build fixed?frequency and variable?frequency air conditioner models, and the frequency regulation model of air conditioner loads is established through large?scale air conditioner aggregation. Then, the automatic generation controller (AGC) and air conditioner controller (ACC) of multiarea interconnected power grid are designed based on the MFAC algorithm, of which the advantages are completely data?driven, no model parameters, strong anti?interference ability and suitable for nonlinear time?varying systems, thereby realizing the control of large?scale air conditioner loads participating in the frequency regulation of renewable energy power systems. Simulation studies are carried out in a three?area interconnected power system. The simulation results obtained under the conditions of load disturbance, wind power fluctuation and ambient temperature change show that the proposed MFAC frequency control algorithm can control large?scale air conditioner loads and effectively suppress the frequency fluctuation caused by wind powers and load disturbances.

    参考文献
    [1] 温佳鑫,卜思齐,陈麒宇,等.基于数据学习的新能源高渗透电网频率风险评估[J].发电技术,2021,42(1):40?47. WEN Jiaxin,BU Siqi,CHEN Qiyu,et al.Data learning?based frequency risk assessment in a high?penetrated renewable power system[J].Power Generation Technology,2021,42(1):40?47.
    [2] 徐贤,陆晓,周挺,等.华东电网一次调频能力量化评估及运行控制策略[J].电力工程技术,2021,40(2):205? 211+219. XU Xian,LU Xiao,ZHOU Ting,et al.Evaluation method and operation control strategy of primary frequency response for East China Grid[J].Electric Power Engineering Technology,2021,40(2):205?211+219.
    [3] 周霞,刘懿诗,戴剑丰,等.考虑风—储—直参与调频的电力系统频率特征定量分析[J].电力系统保护与控制,2023,51(6):30?44. ZHOU Xia,LIU Yishi,DAI Jianfeng,et al.Quantitative analysis of power system frequency characteristics considering wind power?energystorage?flexible HVDC transmission participation in frequency modulation[J].Power System Protection and Control,2023,51(6):30?44.
    [4] 谭鸣骢,王玲玲,蒋传文,等.考虑负荷聚合商调节潜力的需求响应双层优化模型[J].中国电力,2022,55(10):32?44. TAN Mingcong,WANG Lingling,JIANG Chuanwen,et al. Bi?level optimization model of demand response considering regulation potential of load aggregator[J]. Electric Power,2022,55(10):32?44.
    [5] 宋梦,高赐威,苏卫华.面向需求响应应用的空调负荷建模及控制[J].电力系统自动化,2016,40(14):158?167. SONG Meng,GAO Ciwei,SU Weihua.Modeling and controlling of air?conditioning load for demand response applications[J].Automation of Electric Power Systems,2016,40(14):158?167.
    [6] 白东壮,田世明,邹毅豪,等.基于FDA的居民用户空调用电行为分类分析方法[J].智慧电力,2022,50(3):44?49. BAI Dongzhuang,TIAN Shiming,ZOU Yihao,et al.Classification analysis method of residential air conditioning electricity consumption behavior based on functional data analysis model[J].Smart Power,2022,50(3):44?49+71.
    [7] 刘萌,张岩,王大鹏,等.电力系统大功率缺额下空调负荷群集的分散自律控制策略[J].电网技术,2017,41(9):3050?3057. LIU Meng,ZHANG Yan,WANG Dapeng,et al.Decentralized self?discipline control strategy of air?conditioning load group after power system suffering from large power shortage[J].Power System Technology,2017,41(9):3050?3057.
    [8] 刘志伟,苗世洪,杨炜晨,等.计及电气特性的空调负荷建模及集群控制策略[J].电力自动化设备,2022,42(1):178?184+192. LIU Zhiwei,MIAO Shihong,YANG Weichen,et al.Air conditioning load modeling and cluster control strategy considering electrical characteristic[J].Electric Power Automation Equipment,2022,42(1):178?184+192.
    [9] 曹荣敏,郑鑫鑫,侯忠生.基于改进多入多出无模型自适应控制的二维直线电机迭代学习控制[J].电工技术学报,2021,36(19):4025?4034. CAO Rongmin,ZHENG Xinxin,HOU Zhongsheng. An iterative learning control based on improved multiple input and multiple output model free adaptive control for two?dimensional linear motor[J].Transactions of China Electrotechnical Society,2021,36(19):4025?4034.
    [10] 刘北阳,李志兵,赵子瑞,等.高压断路器电磁类型操动机构的位移跟踪技术研究[J].高压电器,2021,57(9):9?18. LIU Beiyang,LI Zhibing,ZHAO Zirui,et al.Research on displacement tracking technology of electromagnetic type operating mechanism for high voltage circuit breaker[J]. High Voltage Apparatus,2021,57(9):9?18.
    [11] XIAHOU K S,LIU Y,WU Q H.Decentralized detection and mitigation of multiple false data injection attacks in multiarea power systems[J].IEEE Journal of Emerging and Selected Topics in Industrial Electronics,2022,3(1):101?112.
    [12] XIAHOU K S,LIU Y,WU Q H.Robust load frequency control of power systems against random time?delay attacks[J].IEEE Transactions on Smart Grid,2021,12(1):909?911.
    [13] 付媛,王毅,张祥宇,等.变速风电机组的惯性与一次调频特性分析及综合控制[J].中国电机工程学报,2014,34(27):4706?4716. FU Yuan,WANG Yi,ZHANG Xiangyu,et al.Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J].Proceedings of the CSEE,2014,34(27):4706?4716.
    [14] 张旭,查效兵,岳帅.基于转子动能控制的DFIG调频能力分析与调频方案[J].电力科学与技术学报,2020,35(3):141?147. ZHANG Xu,ZHA Xiaobing,YUE Shuai.Frequency regulation capability analysis and regulation plan of doubly?fed induction generator based on the rotor kinetic energy control[J].Journal of Electric Power Science and Technology,2020,35(3):141?147.
    [15] 沈运帷.动态可控负荷参与电力系统调频辅助服务理论与市场化应用研究[D].南京:东南大学,2020. SHEN Yunwei.Research on theory and market application of power system frequency regulation service considering dynamic controllable load[D].Nanjing:Southeast University,2020.
    [16] 姚垚,张沛超.大规模变频空调参与电力系统辅助服务的协调控制方法[J].电力系统自动化,2018,42(22):127?134. YAO Yao,ZHANG Peichao.Coordinated control method for ancillary services of power system with participation of large?scale inverter air?conditioner[J].Automation of Electric Power Systems,2018,42(22):127?134.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

左 强,李 波,杨世海.大规模空调负荷参与新能源电力系统调频的无模型自适应控制方法[J].电力科学与技术学报,2023,38(2):224-231.
ZUO Qiang, LI Bo, YANG Shihai. Model‑free adaptive frequency control of renewable energy power systems with participation of large‑scale air conditioner loads[J]. Journal of Electric Power Science and Technology,2023,38(2):224-231.

复制
分享
文章指标
  • 点击次数:191
  • 下载次数: 1077
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2023-06-29
文章二维码