基于注意力机制的二次回路端子文本检测与识别方法
CSTR:
作者:
作者单位:

(1.内蒙古电力科学研究院,内蒙古自治区 呼和浩特 010020;2.内蒙古自治区电力系统智能化电网仿真企业重点实验室,内蒙古自治区 呼和浩特 010020)

通讯作者:

钟 鸣(1987—),男,硕士,工程师,主要从事继电保护等研究;E?mail:zhongning005@163.com

中图分类号:

TM863

基金项目:

内蒙古自治区科技关键技术攻关计划项目(2019GG373)


Attention mechanism‑based text detection and recognition method for secondary circuit terminals
Author:
Affiliation:

(1.Inner Mongolia Power Research Institute, Hohhot 010020, China;2.Inner Mongolia Autonomous Region Power System Intelligent Grid Simulation Enterprise Key Laboratory, Hohhot 010020, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    变电站二次回路是二次高级集成业务的基础,采用图像识别技术对二次回路的自动特征识别、信息提取,可实现二次回路的智能运维业务。而变电站采集的图片环境背景杂乱、分辨率低以及失真,使得采用图像识别技术识别不规则文本极具挑战。因此,提出一种基于注意力机制的二次回路端子文本检测与识别方法。该方法主要包含预处理、文本检测和文本识别3个部分,其中文本识别部分提出一种时空嵌入编码方法,可以更好利用图片的位置信息。在训练过程中,相较未改进方法仅需要序列级的标注信息,而无需额外细粒度的字符级别框或分割掩码。最后,通过实际工作场景数据集证明该方法不仅易用、性能好,且在识别精度上也优于其他方法。

    Abstract:

    The secondary circuit of the substation is the basis of the secondary advanced integrated business. The automatic feature recognition and information extraction of the secondary circuit by image recognition technology can realize the secondary circuit's intelligent operation and maintenance business. However, the images collected by the substation have messy backgrounds, low resolution, and distortion, making it very challenging to identify irregular text using image recognition technology. Therefore, a text detection and recognition method of a secondary loop terminal based on an attention mechanism is proposed. This method mainly includes preprocessing, text detection, and text recognition. In the text recognition part, a spatiotemporal embedding encoding method is proposed, which can better use the picture's location information. Compared with the unimproved method, only the sequence?level annotation information is needed in the training process, and no additional fine?grained character level box or segmentation mask is needed. Finally, it is proved that the proposed method is not only easy to use and has good performance but is also better than other methods in recognition accuracy.

    参考文献
    [1] 律方成,牛雷雷,王胜辉,等.基于优化YOLOv4的主要电气设备智能检测及调参策略[J].电工技术学报,2021,36(22):4837?4848. Lü Fangcheng,NIU Leilei,WANG Shenghui,et al.Intelligent detection and parameter adjustment strategy of major electrical equipment based on optimized YOLOv4[J].Transactions of China Electrotechnical Society,2021,36(22):4837?4848.
    [2] 王磊,黄力,张礼波,等.基于联合训练方法的变电站屏柜接线故障诊断技术[J].供用电,2020,37(5):85?90. WANG Lei,HUANG Li,ZHANG Libo,et al.Substation panel cabinet wiring fault diagnosis technology based on joint training method[J].Distribution & Utilization,2020,37(5):85?90.
    [3] 苏玉刚,阳剑,戴欣,等.基于TensorFlow神经网络的MCR?WPT系统负载与互感识别方法[J].电力系统自动化,2021,45(18):162?169. SU Yugang,YANG Jian,DAI Xin,et al.Tensorflow neural network based load and mutual inductance identification method for magnetic coupling resonant wireless power transfer system[J].Automation of Electric Power Systems,2021,45(18):162?169.
    [4] 杨剑锋,秦钟,庞小龙,等.基于深度学习网络的输电线路异物入侵监测和识别方法[J].电力系统保护与控制,2021,49(4):37?44. YANG Jianfeng,QIN Zhong,PANG Xiaolong,et al.Foreign body intrusion monitoring and recognition method based on Dense?YOLOv3 deep learning network[J].Power System Protection and Control,2021,49(4):37?44.
    [5] MA J Q,SHAO W Y,YE H,et al.Arbitrary?oriented scene text detection via rotation proposals[J].IEEE Transactions on Multimedia,2018,20(11):3111?3122.
    [6] LIU J C,LIU X B,SHENG J,et al.Pyramid mask text detector[EB/OL].[2021?03?02].https://arxiv.org/abs/1903. 11800.
    [7] 彭秋辰,宋亦旭.基于Mask R?CNN的物体识别和定位[J].清华大学学报(自然科学版),2019,59(2):135?141. PENG Qiuchen,SONG Yixu.Object recognition and localization based on Mask R?CNN[J].Journal of Tsinghua University (Science and Technology),2019,59(2):135?141.
    [8] SHI B G,BAI X,YAO C.An end?to?end trainable neural network for image?based sequence recognition and its application to scene text recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(11):2298?2304.
    [9] YUE X Y,KUANG Z H,LIN C H,et al.RobustScanner:dynamically enhancing positional clues for robust text recognition[C]//European Conference on Computer Vision,Glasgow,uk,2020.
    [10] 袁淦钦.智能变电站二次回路检测技术研究[D].广州:广东工业大学,2020. YUAN Ganqin.Research on secondary circuit detection technology of intelligent substation[D].Guangzhou:Guangdong University of Technology,2020.
    [11] 周健,李岩,张克声.变电站二次系统设备屏柜线套标签智能识别系统[J].机械与电子,2018,36(11):67?70. ZHOU Jian,LI Yan,ZHANG Kesheng.Intelligent identification system for equipment screen cabinet line label of substation secondary system[J].Machinery & Electronics,2018,36(11):67?70.
    [12] ZHOU X Y,YAO C,WEN H,et al.EAST:an efficient and accurate scene text detector[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA,2017.
    [13] 楚瀛,李帅奇.基于联合特征的变电站设备图像识别[J].电力科学与技术学报,2018,33(1):102?107. CHU Ying,LI Shuaiqi.Image recognition of substation equipment based on joint feature[J].Journal of Electric Power Science and Technology,2018,33(1):102?107.
    [14] 吴军,白梁军,董晓虎,等.基于Cascade R?CNN算法的输电线路小目标缺陷检测方法[J].电网与清洁能源,2022,38(4):19?27+36. WU Jun,BAI Liangjun,DONG Xiaohu,et al.Transmission line small target defect detection method based on cascade R?CNN algorithm[J].Power System and Clean Energy,2022,38(4):19?27+36.
    [15] 李俊,任景,王晔琳,等.基于改进U?net和CNN的绝缘子自爆检测方法研究[J].智慧电力,2021,49(8):98?103. LI Jun,REN Jing,WANG Yelin,et al.Insulator self?explosion detection method based on improved U?net and CNN[J].Smart Power,2021,49(8):98?103.
    [16] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//31st International Conference on Neural Information Processing Systems,Long Beach,California,USA,2017.
    [17] 王彦彪,陈振勇,郭文萍,等.基于双注意力机制优化CNN架构的GIS局部放电模式识别[J].电力科学与技术学报,2022,37(2):22?29. WANG Yanbiao,CHEN Zhenyong,GUO Wenping,et al.PD pattern recognition for GIS based on CNN architecture optimized by the double attention mechanism[J].Journal of Electric Power Science and Technology,2022,37(2):22?29.
    [18] TIAN Z,HUANG W L,HE T,et al.Detecting text in natural image with connectionist text proposal network[C]//European Conference on Computer Vision,Amsterdam,The Netherland,2016.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

钟 鸣,陶 军,阿敏夫,等.基于注意力机制的二次回路端子文本检测与识别方法[J].电力科学与技术学报,2023,38(3):132-139.
ZHONG Ming, TAO Jun, A Minfu, et al. Attention mechanism‑based text detection and recognition method for secondary circuit terminals[J]. Journal of Electric Power Science and Technology,2023,38(3):132-139.

复制
分享
文章指标
  • 点击次数:168
  • 下载次数: 664
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2023-09-19
文章二维码