基于改进Cascade R‑CNN的绝缘子故障检测方法研究
CSTR:
作者:
作者单位:

(1.国网新疆电力有限公司乌鲁木齐供电公司,新疆 乌鲁木齐 830000;2.湖南大学电气与信息工程学院,湖南 长沙 410082)

通讯作者:

朱彦卿(1978—),男,博士,副教授,主要从事电工理论与新技术、电网络测试与诊断、人工智能技术应用等研究;E?mail:zyq@hnu.edu.cn

中图分类号:

TM855

基金项目:

国家电网有限公司科技项目(SGXJWL00SDJS2100845)


Study of insulator fault detection algorithm based on improved Cascade R‑CNN network
Author:
Affiliation:

(1.Urumqi Power Supply Company of State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830000, China; 2.College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    针对航拍图中存在的绝缘子故障位置在图像中占比小、背景环境复杂导致的故障检测准确率低的问题,提出一种基于改进Cascade R?CNN模型的绝缘子故障检测方法。在原有Cascade R?CNN模型的基础上,在骨干网络中引入可变形卷积学习几何变换能力,在检测器中引入平衡损失函数平衡难易样本。在模型训练阶段,使用Copy?Paste与Mosica丰富故障绝缘子样本,平衡正负样本。使用该模型对航拍绝缘子图片进行故障检测实验,改进损失函数的模型与传统Cascade R?CNN模型相比平均召回率提升0.38%,引入可变卷积后的Cascade R?CNN模型与Faster R?CNN模型,相比平均召回率,从原来的89.78%变成93.49%,结果表明该模型能够有效克服样本遮挡以及样本不平衡的干扰。

    Abstract:

    Aiming at the low accuracy problem of insulator fault detection caused by the fault position occupies a small proportion in the image and complex background environment in aerial images, an insulator fault detection method based on optimized Cascade R-CNN model is proposed in this paper. Based on the original Cascade R-CNN model, deformable convolution is inserted into the backbone network to learn geometric transformation capabilities, and balance loss function is introduced in the detector to balance difficult and easy samples. In the model training phase, the faulty insulator samples are enriched by using Copy-Paste and Mosica, and the positive and negative samples are balanced. The proposed model is tested for insulator fault detection. Compared with the traditional Cascade R-CNN model, the average recall of the optimized loss function model improves 0.38%. Comparing with the Faster R-CNN model, the average recall of the Cascade R-CNN model after introducing variable convolution improves from 89.78% to 93.49%. The results indicate that the proposed model can overcome the interference of samples shielding and sample imbalance effectively.

    参考文献
    [1] 梁曦东,高岩峰,王家福,等.中国硅橡胶复合绝缘子快速发展历程[J].高电压技术,2016,42(9):2888?2896. LIANG Xidong,GAO Yanfeng,WANG Jiafu,et al.Rapid development of silicone rubber composite insulator in China[J].High Voltage Engineering,2016,42(9):2888? 2896.
    [2] 黄郑,王红星,周航,等.基于混合算法的电力杆塔巡检实时航迹规划[J].中国电力,2021,54(11):214?220. HUANG Zheng,WANG Hongxing,ZHOU Hang,et al. Real?time path planning for power tower inspection based on hybrid algorithm[J].Electric Power,2021,54(11):214?220.
    [3] 唐睿,张铭予,徐宏,等.基于深度学习的输电线路巡检图像绝缘子识别[J].电网与清洁能源,2021,37(4):41?46. TANG Rui,ZHANG Mingyu,XU Hong,et al.Insulator recognition in transmission line inspection image based on deep learning[J].Power System and Clean Energy,2021,37(4):41?46.
    [4] FANG T,JIN X,HU X L,et al.A fast insulator? contour?detection?algorithm on power transmission lines images[J].Applied Mechanics & Materials,2012,201?202:337?343.
    [5] 韩谷静,何敏,雷宇航,等.基于改进U?Net的输电线路绝缘子图像分割方法研究[J].智慧电力,2022,50(3):93?99. HANGujing,HE Min,LEI Yuhang,et al.Image segmentation method of transmission line insulator based on improved U?Net[J].Smart Power,2022,50(3):93?99.
    [6] 黄玲,赵锴,李继东,等.基于特征金字塔和多任务学习的绝缘子图像检测[J].电测与仪表,2021,58(4):37?45. HUANG Ling,ZHAO Kai,LI Jidong,et al.Insulator image detection based on feature pyramid and multi?task learning[J].Electrical Measurement & Instrumentation,2021,58(4):37?45.
    [7] OBERWEGER M,WENDEL A,BISCHOF H.Visual recognition and fault detection for power line insulators[C]//19th Computer Vision Winter Workshop,Beijing,China,2014.
    [8] 刘云鹏,董王英,许自强,等.基于卷积神经网络的变压器套管故障红外图像识别方法[J].高压电器,2021,57(10):134?140. LIU Yunpeng,DONG Wangying,XU Ziqiang,et al.Infrared image recognition method on fault of transformer bushing based on convolutional neutral networks[J].High Voltage Apparatus,2021,57(10):134?140.
    [9] 胡维昊,曹迪,黄琦,等.深度强化学习在配电网优化运行中的应用[J].电力系统自动化,2023,47(14):174?191. HU Weihao,CAO Di,HUANG Qi,et al.Application of deep reinforcement learning in optimal operation of distribution network[J].Power System Automation,2023,47(14):174? 191.
    [10] 蔡智超,孙翼虎,赵振勇,等.基于时频分析和深度学习的表面粗糙度超声模式识别方法[J].电工技术学报,2022,37(15):3743?3752. CAI Zhichao,SUN Yihu,ZHAO Zhenyong,et al.A deep learning?based electromagnetic ultrasonic recognition method for surface roughness of workpeice[J].Transactions of China Electrotechnical Society,2022,37(15):3743?3752.
    [11] 秦瀛.基于深度学习的输电线路复合绝缘子缺陷检测[D].北京:北京交通大学,2020. QIN Ying.Defect Detection of composite insulators for transmission lines based on deep learning[D].Beijing:Beijing Jiaotong University,2020.
    [12] 刘君,邓毅,杨延西,等.基于深度学习的空预器转子红外补光图像积灰状态识别[J].发电技术,2022,43(3):510?517. LIU Jun,DEND Yi,YANG Yanxi,et al.Ash accumulation state identification for infrared compensation images of air preheater rotor based on deep learning method[J].Power Generation Technology,2022,43(3):510?517.
    [13] 王卓,王玉静,王庆岩,等.基于协同深度学习的二阶段绝缘子故障检测方法[J].电工技术学报,2021,36(17):3594?3604. WANG Zhuo,WANG Yujing,WANG Qingyan,et al.Two stage insulator fault detection method based on collaborative deep learning[J].Transactions of China Electrotechnical Society,2021,36(17):3594?3604.
    [14] 罗潇,於锋,彭勇.基于深度学习的无人机电网巡检缺陷检测研究[J].电力系统保护与控制,2022,50(10):132?139. LUO Xiao,YU Feng,PENG Yong.UAV power grid inspection defect detection based on deep learning[J].Power System Protection and Control,2022,50 (10):132?139.
    [15] CAI Z,VASCONCELOS N.Cascade R?CNN:Delving into high quality object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,USA,2018.
    [16] DAI J,QI H,XIONG Y,et al.Deformable convolutional networks[C]// Proceedings of the IEEE international conference on computer vision,Venice,Italy,2017.
    [17] REN S,HE K,GIRSHICK R,et al.Faster R?CNN:towards real?time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137?1149.
    [18] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition,Las Vegas,USA,2016:770?778.
    [19] GHIASI G ,CUI Y ,SRINIVAS A ,et al.Simple copy?paste is a strong data augmentation method for instance segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition,Nashville,USA,2021.
    [20] PANG J,CHEN K,SHI J,et al.Libra R?CNN:towards balanced learning for object detection[C]// Proceedings of the IEEE conference on computer vision and pattern recognition,Long Beach,USA,2020.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

居来提·阿不力孜,刘玉龙,曹 留,等.基于改进Cascade R‑CNN的绝缘子故障检测方法研究[J].电力科学与技术学报,2023,38(3):140-148.
ABULIZI Julaiti, LIU Yulong, CAO Liu, et al. Study of insulator fault detection algorithm based on improved Cascade R‑CNN network[J]. Journal of Electric Power Science and Technology,2023,38(3):140-148.

复制
分享
文章指标
  • 点击次数:175
  • 下载次数: 614
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2023-09-19
文章二维码