基于遗传算法优化的BP神经网络在配电网故障诊断中的应用
作者:
作者单位:

(1.国网宁夏电力有限公司电力科学研究院,宁夏 银川 750002;2:国网宁夏电力有限公司,宁夏 银川 750002)

作者简介:

通讯作者:

祁升龙(1988—),男,工程师,硕士,主要从事配电自动化、配电网运检等研究;E?mail:lxhsxty68@126.com

中图分类号:

TM862

基金项目:

国网宁夏电力有限公司科技项目(FWSQCG?DKY?2020?2920C7)


Application of genetic algorithm optimization based BP Neural Network in fault diagnosis of distribution network
Author:
Affiliation:

( 1.State Grid Ningxia Electric Power Technical Research Institute, Yinchuan 750002,China ; 2.State Grid Ningxia Electric Power Co., Ltd.,Yinchuan 750002,China )

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    BP神经网络作为人工神经网络中的典型网络模型,在配电网故障诊断中也有广泛的应用,但由于其初始权值和初始阈值的随机性,应用中存在诊断精度不高等问题。针对这一问题,提出一种基于遗传算法优化的BP神经网络的配网故障诊断方法,利用遗传算法对BP神经网络的初始权值和阈值进行优化,并在算例中与传统神经网络进行故障诊断结果对比,最后分析两者仿真误差值,验证其可行性。结果表明,遗传算法得到BP神经网络较为理想的初始权值和阈值,可有效降低运行结果的误差,使诊断结果更加准确。

    Abstract:

    As a typical network model of artificial neural network, BP neural network has been widely used in fault diagnosis of distribution network. However, due to the randomness of initial weight and initial threshold, the diagnosis accuracy is not high in application. Aiming at this problem, a distribution network fault diagnosis method based on genetic algorithm optimization of BP neural network is proposed. The initial weight and threshold of BP neural network are optimized by genetic algorithm, and the fault diagnosis results are compared with those of traditional neural network in the calculation example. Finally, the simulation errors of the two are analyzed to verify the feasibility. The results show that the genetic algorithm provides relatively ideal initial weights and thresholds for the BP neural network, effectively reducing the error in the operational results and improving the accuracy of the diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

祁升龙,芦 翔,刘海涛,等.基于遗传算法优化的BP神经网络在配电网故障诊断中的应用[J].电力科学与技术学报,2023,38(3):182-187,196.
QI Shenglong, LU Xiang, LIU Haitao, et al. Application of genetic algorithm optimization based BP Neural Network in fault diagnosis of distribution network[J]. Journal of Electric Power Science and Technology,2023,38(3):182-187,196.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-19
  • 出版日期:
文章二维码